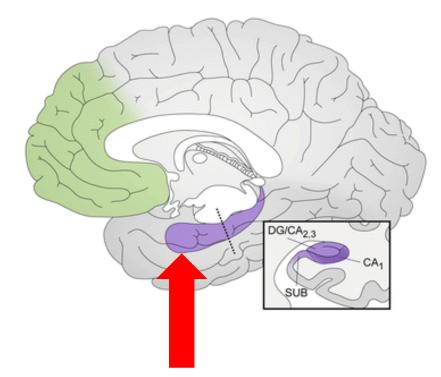

## Passive Visuospatial Memory Testing on Mobile Devices


We're putting the eye in AI



## The Problem



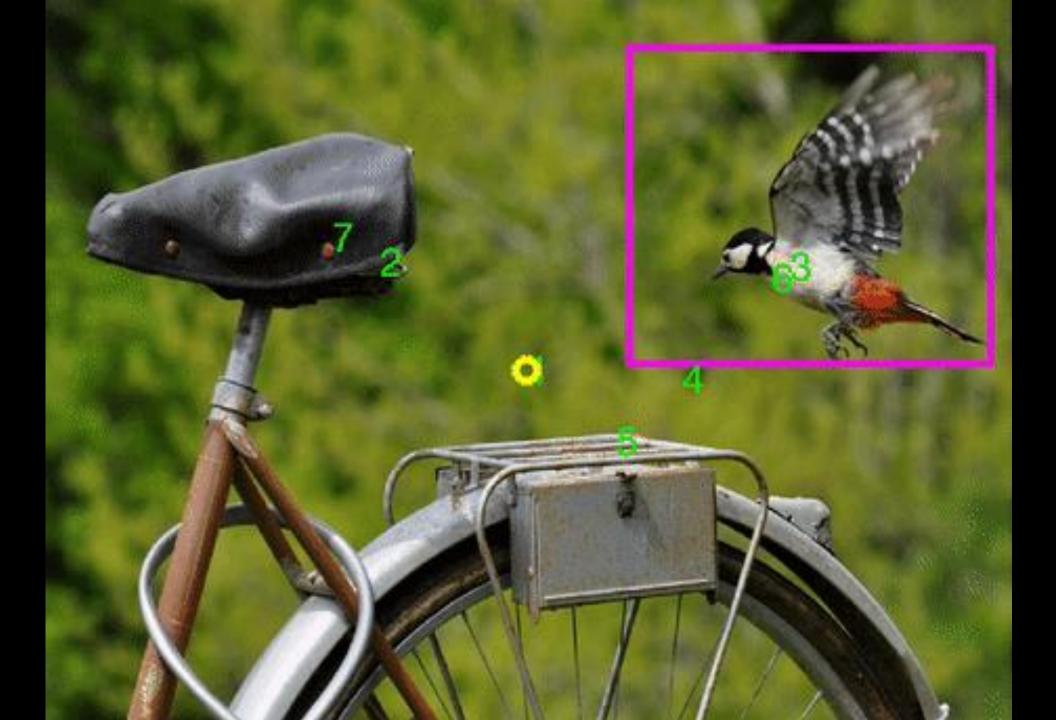
## **Solution: Visuospatial Memory**



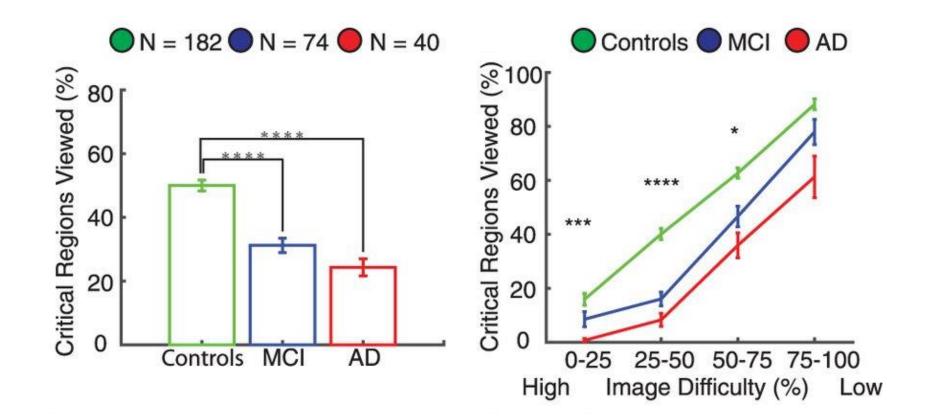
Visuospatial Memory is sensitive to the earliest AD pathology

- Visual pattern separation is sensitive to early pathological changes in AD
- Shown to be sensitive to 10% hippocampal lesions in non-human primates

Brief – Passive – Objective – Language-Independent

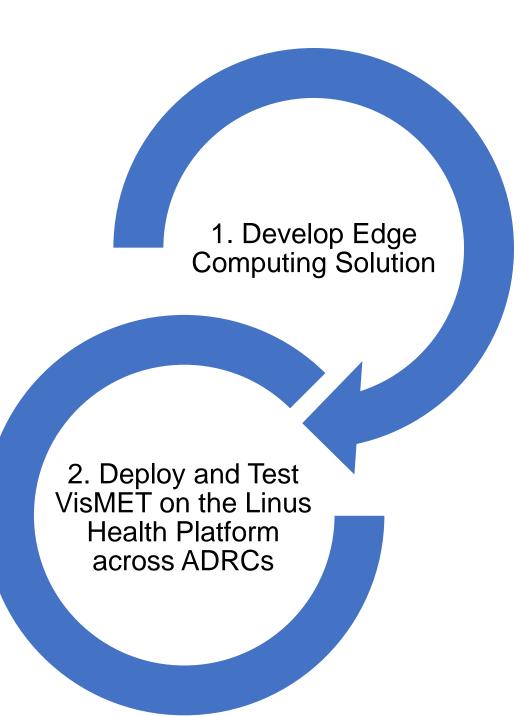

...2 minutes later

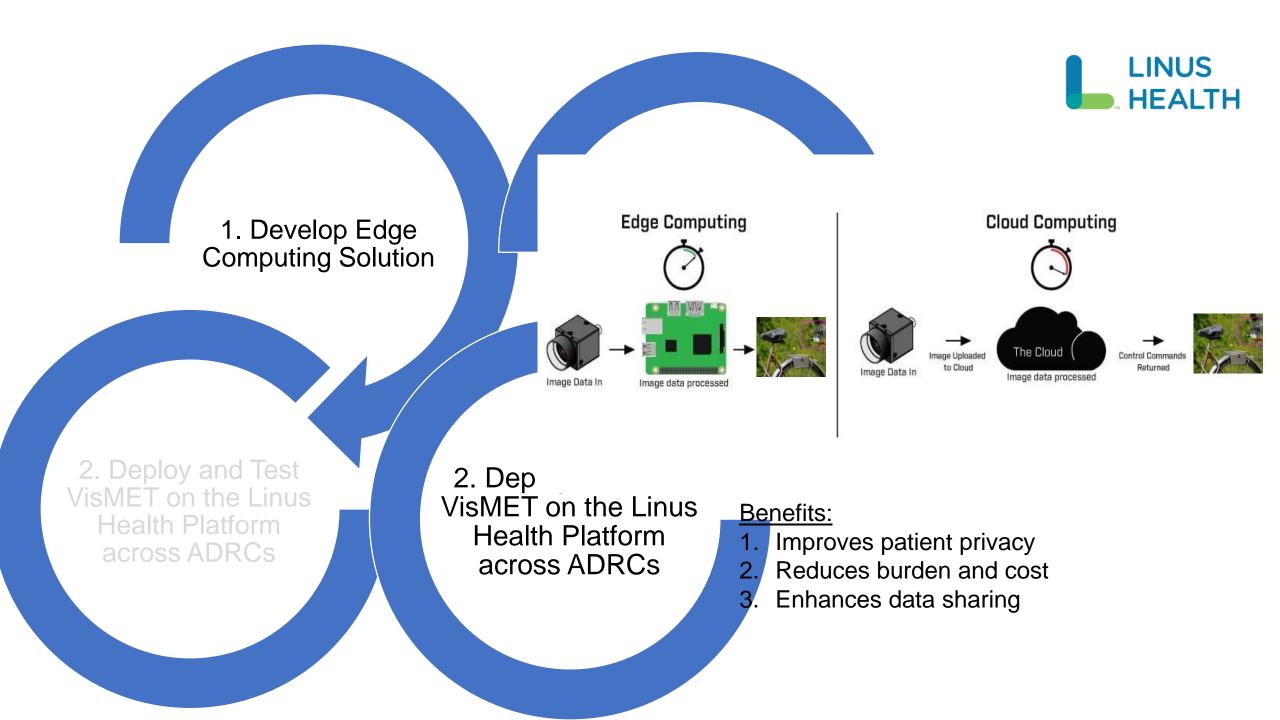



Encoding Phase (Images 1-10)

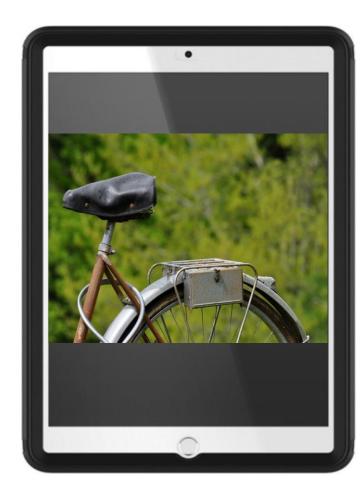


Recognition Phase (Images 11-20)





Effective Predictor of Cognitive Impairment (AUC= .76-.78)




Haque et al., 2019; Haque et al., 2021; Jiang et al., 2022; Jiang et al., 2023

## Current Project

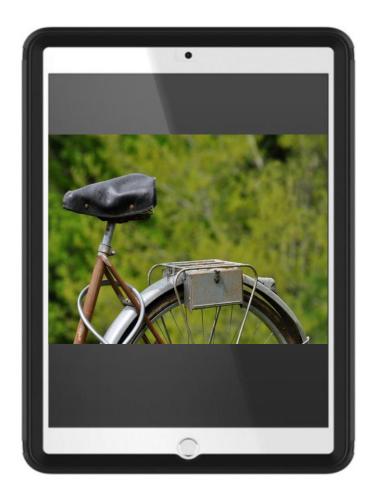











**Novel Digital Tool** 

Low Burden

**Rich and Objective Data** 

Equitable









Scale Nationally

Create Infrastructure for Global Scaling and Remote Administration

## **Project Team**

### **Cognitive Function and ADRD**

Kayci Vickers, PhD Allan Levey, MD, PhD Cecelia Manzanares





Goizueta Alzheimer's Disease Research Center



Department of Biomedical Informatics

### 

### **Scaling and Commercialization**

Sean Tobyne, PhD David Bates, PhD





#### Healthcare Data Informatics and Al

Gari Clifford, PhD Salman Seyedi, PhD



**Partnering ADRCs** 

BOSTON

UNIVERSITY

Alzheimer's Disease Center

Vijaya Kolachalama, PhD

UC San Diego School of Medicine Shiley-Marcos Alzheimer's Disease Research Center

> Douglas Galasko, MD David Salmon, PhD



## Q & A

### **Cognitive Function and ADRD**

Kayci Vickers, PhD Allan Levey, MD, PhD Cecelia Manzanares







Goizueta Alzheimer's Disease Research Center

Healthcare Data Informatics and AI

Gari Clifford, PhD

Salman Seyedi, PhD

Department of Biomedical Informatics

### 

### **Scaling and Commercialization**

Sean Tobyne, PhD David Bates, PhD





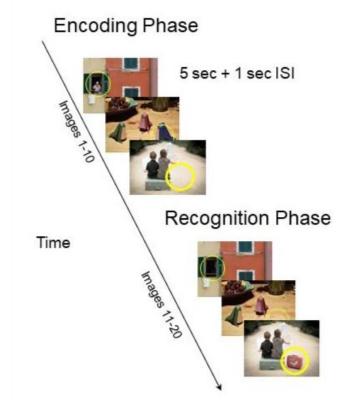
## Partnering ADRCs



Vijaya Kolachalama, PhD



UC San Diego School of Medicine Shiley-Marcos Alzheimer's Disease Research Center


> Douglas Galasko, MD David Salmon, PhD



## References

- Haque RU, Manzanares CM, Brown LN, et al. VisMET: a passive, efficient, and sensitive assessment of visuospatial memory in healthy
  aging, mild cognitive impairment, and Alzheimer's disease. *Learn Mem.* 2019;26(3):93-100. doi:10.1101/lm.048124.118
- Haque RU, Pongos AL, Manzanares CM, Lah JJ, Levey AI, Clifford GD. Deep Convolutional Neural Networks and Transfer Learning for Measuring Cognitive Impairment Using Eye-Tracking in a Distributed Tablet-Based Environment. *IEEE Transactions on Biomedical* Engineering. 2021;68(1):11-18. doi:10.1109/TBME.2020.2990734
- Jiang Z, Seyedi S, Haque RU, et al. Automated analysis of facial emotions in subjects with cognitive impairment. *PLoS One*. 2022;17(1):e0262527. doi:10.1371/journal.pone.0262527
- Jiang Z, Seyedi S, Vickers KL, et al. Disentangling visual exploration differences in cognitive impairment. Published online May 24, 2023:2023.05.17.23290054. doi:10.1101/2023.05.17.23290054
- Johnson DK, Storandt M, Morris JC, Galvin JE. Longitudinal Study of the Transition From Healthy Aging to Alzheimer Disease. Archives of Neurology. 2009;66(10):1254-1259. doi:10.1001/archneurol.2009.158
- Urgolites ZJ, Smith CN, Squire LR. Eye movements support the link between conscious memory and medial temporal lobe function. Proc Natl Acad Sci U S A. 2018;115(29):7599-7604. doi:10.1073/pnas.1803791115
- Zola SM, Manzanares CM, Clopton P, Lah JJ, Levey AI. A behavioral task predicts conversion to mild cognitive impairment and Alzheimer's disease. *Am J Alzheimers Dis Other Demen*. 2013;28(2):179-184. doi:10.1177/1533317512470484
- Bott NT, Lange A, Rentz D, Buffalo E, Clopton P, Zola S. Web Camera Based Eye Tracking to Assess Visual Memory on a Visual Paired Comparison Task. Front Neurosci. 2017;11:370. doi:10.3389/fnins.2017.00370
- Crutcher MD, Calhoun-Haney R, Manzanares CM, Lah JJ, Levey AI, Zola SM. Eye tracking during a visual paired comparison task as a
  predictor of early dementia. Am J Alzheimers Dis Other Demen. 2009;24(3):258-266. doi:10.1177/1533317509332093
- Zola SM, Squire LR, Teng E, Stefanacci L, Buffalo EA, Clark RE. Impaired Recognition Memory in Monkeys after Damage Limited to the Hippocampal Region. J Neurosci. 2000;20(1):451-463. doi:10.1523/JNEUROSCI.20-01-00451.2000

# The Visuospatial Memory Eye-Tracking Test (VisMET)



### Removed Condition

### Original



### Manipulated



#### Added Condition

Original



### Manipulated



## Why Visuospatial Memory?

- VS Memory tasks have been shown to activate the entorhinal-hippocampal circuit and may be promising indicators of early hippocampal changes inherent in AD. (Johnson et al., 2009; Zola et al., 2013; Urgolites et al., 2018)
  - Eye tracking can increase sensitivity to subtle decline in memory retrieval
- VisMET is based upon Visual Paired Comparison (VPC) task paradigm which assess declarative memory by comparing time viewing images that are familiar versus novel. <sup>(Urgolites et al, 2018, Zola et al., 2013, Bott et al. 2017, Crutcher et al., 2009)</sup>
  - 30-min VPC task reliably predicted the onset of Mild Cognitive Impairment (MCI) or AD within 3-6 years. <sup>(Crutcher et al., 2009)</sup>
  - Moreover, studies of VPC tasks in non-human primates have shown that VPC plus eye-tracking tasks can detect subtle memory decline in primates who have small hippocampal lesions, even with 70-80% of the structure unaffected. <sup>(Zola et al., 2000).</sup>

## The Visuospatial memory Eye-Tracking Test (VisMET)



Appears less reliant on demographic factors than traditional measures

|                  | Black/AA Pt (n=38)         | nH-White Pt (n=38)         |
|------------------|----------------------------|----------------------------|
| Age (Mean)       | 74.9 years (SD = 7.8)      | 74.6 years (SD = 8.2)      |
| Sex              | 31.6% Male<br>68.4% Female | 31.6% Male<br>68.4% Female |
| Education (Mean) | 16.6 years (1.9)           | 16.8 years (1.9)           |

- Age was the only significant demographic predictor of VisMET performance (b=0.00, t=-2.5, p=.01).
- Sex, race, and education were not significant.

## Aim 2. Pilot the Linus Health Platform VisMET App in at least three ADRC cohorts.

- <u>Key Components of this Aim:</u>
  - Evaluate VisMET performance in at least 300 participants enrolled across the Goizueta ADRC and at external ADRC sites, including UCSD and BU
- <u>Milestones:</u>
  - delivery of study materials to participating sites
  - completed data collection
  - completed data analysis

| Scientific - Aim 2 | Pilot the Linus Health Platform VisMET App in at least three ADRC cohorts.                                              |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| Task 1             | Deliver VisMET App and standardized protocols for each participating<br>ADRC                                            |
| Task 2             | Provide any necessary training for VisMET administration                                                                |
| Key Milestone 1    | Successful deployment of VisMET at all participating sites                                                              |
| Task 4             | Complete early data quality checks (within first 10 participants at all<br>sites) to ensure data collected are accurate |
| Task 5             | Collect Data Across Sites                                                                                               |
| Key Milestone 2    | Complete data collection at all sites                                                                                   |
| Task 6             | Complete formal data cleaning and all data quality checks                                                               |
| Task 7             | Analyze Data                                                                                                            |
| Key Milestone 3    | Complete data analysis                                                                                                  |

Aim 2. Pilot the Linus Health Platform VisMET App in at least three ADRC cohorts.

- Utilizing existing recruitment mechanisms, we will work with partnering sites to recruit at least 300 participants with a range of cognitive function to complete VisMET alongside their standard UDS-3 testing.
- Hypotheses
  - 2A. VisMET performance will demonstrate adequate AUC (> .80) for detecting cognitive impairment based on MoCA performance, and that performance will not significantly differ between sites.
  - **2B.** VisMET performance will demonstrate moderate to strong correlations with established measures of verbal and visual memory included in the UDS-3<sup>6</sup>.
  - **2C.** VisMET's ability to detect cognitive status in diverse cohorts will not differ by race, sex, or education.

# Relationship to other clinically relevant measures

- **Cognitive Measures** (n=98 from Emory Cognitive Clinic + GADRC)
  - Global function (MoCA; r=.28, p< .01)
  - Delayed Memory (Benson Figure Delay: r= .36, p< .01; CERAD Word List Delay: r= .29, p< .01)</li>

### • **CSF Biomarker Concentrations** (n=131 from EHBS and ADRC studies)

- 69.5% control, 19.1% MCI, 6.1% AD, 3% Non-AD Dementia; 51.9% Biomarker Positive
- Aß42/pTau18 ratio: r= -.31, p< .01
- In binary logistic regression analyses, VisMET performance significantly predicted CSF biomarker status, χ<sup>2</sup>(1)= 5.66, p= .017.

### **Additional Metrics**

- Facial emotions expressed during VisMET significantly differed in participants with cognitive impairment.
- We have also found individuals with cognitive impairment transition less between ROIs, do so in a more unpredictable manner, and with different semantic grouping than those who are cognitively normal, which are features that improve AUC.

| TABLE II: Classification performance of cognitive impairment. The term all represents per         | erformance using all images |
|---------------------------------------------------------------------------------------------------|-----------------------------|
| (including those that were modified), and og indicates the use of only the original unmodified in | nages.                      |

| Feature type                                          | AUROC-all | F1-all | AUROC-og | F1-og |
|-------------------------------------------------------|-----------|--------|----------|-------|
| 1. Oculomotor features                                | 0.64      | 0.60   | 0.58     | 0.54  |
| 2. Spatial distribution (spatial)                     | 0.68      | 0.63   | 0.62     | 0.57  |
| <ol><li>HMM transition matrix (temporal)</li></ol>    | 0.64      | 0.69   | 0.59     | 0.65  |
| <ol> <li>All HMM features (spatiotemporal)</li> </ol> | 0.69      | 0.70   | 0.64     | 0.65  |
| <ol><li>Semantic viewing time (semantics)</li></ol>   | 0.73      | 0.74   | 0.65     | 0.61  |
| 6. Modification viewing time (memory) [23]            | 0.73      | 0.72   | NA       | NA    |
| 7. Combined (all: 2+4+5)                              | 0.78      | 0.76   | NA       | NA    |

*Jiang et al., 2022, Jiang et al., 2023*