
Updated MRI Methods 

Removal of Non-brain tissues: The skull is removed using an atlas-based method1 followed by 
human quality control to provide generally minor cleanup if needed. Structural MRI brain images 
are then nonlinearly registered performed by a cubic B-spline deformation 2 to a minimal 
deformation template (MDT) synthetic brain image3 adapted for age range of 60 and above. 

Image Intensity Inhomogeneity Correction: B1 field inhomogeneity is a common problem that 
limits the precision of image segmentation.  We utilize a template-based iterative method for 
correcting field inhomogeneity bias4.  At each algorithm iteration, the update of a B-spline 
deformation between an unbiased template image and the subject image is interleaved with 
estimation of a bias field based on the current template-to-image alignment. The bias field is 
modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image 
patch intensity means between the deformed template and subject images. This is used to 
iteratively correct subject image intensities which are then used to improve the template-to-
image deformation. 

Gray, White and CSF Measurement: Our segmentation algorithm is based on an Expectation-
Maximization (EM) algorithm that iteratively refines its segmentation estimates to produce 
outputs that are most consistent with the input intensities from the native-space T1 images 
along with a model of image smoothness 5, 6.  Like all EM algorithms, the system must be 
initialized with a reasonable estimate. We produce this initial estimate from the template-space 
warps of previously segmented images; because locations of WM/GM/CSF tissues are known in 
the template space, transforming these masks back to the each image’s native space produces 
rough estimate 3-tissue segmentations. We then calculate the mean and standard deviation of 
the image intensities in locations labeled as each tissue type. These values then form the initial 
parameters for a Gaussian model of image intensity for each class.  At each iteration, the 
algorithm uses a Gaussian model of T1-weighted image intensity for each tissue class, in order 
to produce a segmentation. In the first iteration, these models are estimated as described 
above. The segmentation yielded by these appearance models alone is then refined using a 
Markov Random Field (MRF) model, a computational statistical method that efficiently produces 
a label map consistent with both the input intensities and image smoothness statistics. Inference 
in the MRF is computed using an adaptive priors model6. This refined segmentation from the 
MRF is then used to compute new Gaussian intensity models for each tissue class, and the 
algorithm repeats, iteratively switching between calculating Gaussian appearance models and 
MRF-based segmentation, until convergence. The MRF-based segmentation at the final 
iteration is used as the final output segmentation.  
 

White Matter Hyperintensity:  WMH is performed on a combination of FLAIR and 3D T1 images 
using a modified Bayesian probability structure based on a previously published method of 
histogram fitting 7.  Prior probability maps for WMH were created from more than 700 individuals 
with semi-automatic detection of WMH followed by manual editing.  Likelihood estimates of the 
native image are calculated through histogram segmentation and thresholding.   All 
segmentation is initially performed in standard space resulting in probability likelihood values of 
WMH at each voxel in the white matter.  These probabilities are then thresholded at 3.5 sd 
above the mean to create a binary WMH mask.  Further segmentation is based on a modified 
Bayesian approach that combines image likelihood estimates, spatial priors and tissue class 
constraints.  The segmented WMH masks are then back-transformed on to native space for 
tissue volume calculation.  Volumes are log-transformed to normalize population variance.  

Automatic Hippocampal Segmentation: MRI-derived hippocampal volumetry has been a widely 
used biomarker in AD to improve early diagnosis8, enrich subject selection9, and monitor 



treatment efficacy10, 11. To address this need, the EADC-ADNI Working Group established a 
Delphi panel to determine the optimum protocol12, selected orientation parameters13 and 
developed the final, rigorously tested protocol along with making publically available labels from 
over 100 ADNI subjects14. Our hippocampal segmentation method employs a standard atlas 
based diffeomorphic approach15 with the minor modification of label refinement. We further 
modified this approach to include the EADC-ADNI harmonized hippocampal masks to assure 
standardization across cohorts. Therefore we have adopted the following approach: 1) Subject 
image pre-processing with extraction of intracranial cavity, non-uniformity correction, tissue 
classification as discussed above; 2) Atlas Registration of all EADC-ADNI hippocampal masks8, 

12, 14, 16, 17 to each subject; 3) Atlas Fusion utilizing MALF 18, 19; and 4) Intensity-based label 
refinement.    

ROI-based Analysis: Software developed by the IDeA laboratory allows the creation of any set 
of user-defined ROIs or utilization of published ROIs. The lab provides multiple sets of 
predefined regions of interest including lobar volumes, the Desikan-Killiany Atlas from 
Freesurfer20 and Brodmann areas defined by an expert anatomist 21.   Regional measures are 
calculated by back transformation of the atlas into segmented image native space.  A voting 
scheme is used to assure precise labelling of each region after interpolation of the atlas into 
native space.   

Cortical Thickness: We utilize a registration based method based on Das et al.22 which consists 
of the following steps: an initial probabilistic segmentation of GM, WM and CSF after intensity 
inhomogeneity correction4 using our segmentation methods 6.  From the three probability maps, 
a three label image is formed by picking the tissue type with the highest probability at each 
voxel. A greedy diffeomorphic registration algorithm is then used to expand the WM segment, to 
match the GM + WM segment or until a maximum of 6 mm displacement is reached.  For each 
boundary voxel on the GM/WM boundary, the thickness is calculated as the distance moved 
under the registration transformation, and this thickness value is then propagated across the 
GM mask.  

Infarcts: The presence of MRI infarction was determined from the size, location and imaging 
characteristics of the lesion. The image analysis system allowed for superimposition of the 
subtraction image, the proton density image and the T2 weighted image at three times 
magnified view to assist in interpretation of lesion characteristics. Signal void, best seen on the 
T2 weighted image was interpreted to indicate a vessel.   Only lesions 3mm or larger qualified 
for consideration as cerebral infarcts.  Other necessary imaging characteristics included: 1) CSF 
density on the subtraction image and 2) If the stroke was in the basal ganglia area, distinct 
separation from the circle of Willis vessels.   Kappa values for agreement amongst the three 
raters are generally good and range from 0.73 to 0.90. 
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