Apolipoprotein Modulation of Aβ Deposition in a Transgenic Mouse Model of Alzheimer's Disease

Ronald B. DeMattos

Neuroscience Discovery Research at Eli Lilly

APP^{V717F} (PDAPP) Mouse Model of AD

Human Cortex

Transgenic Mouse

Aβ Immunostaining

Human APP^{V717F} Tissue Expression

6E10 Western Blot

Isolation of Murine CSF from Cisterna Magna

Soluble $A\beta_{Total}$ Concentrations in Human and Transgenic Mice

		Cerebrospinal fluid	Plasma
		$(A \beta_{Total})$	$(\mathbf{A}\boldsymbol{\beta}_{\mathbf{Total}})$
Human		14.9 ng/ml ¹	335 pg/ml ²
PDAPP	3 month old	19.4 ng/ml ³	176 pg/ml ³
PDAPP	9 month old	14.1 ng/ml ³	214 pg/ml ³
Tg2576	3-6 month old	~56.0 ng/ml ^{17*}	~19,000 pg/ml ^{17*}

*The $A\beta_{Total}$ levels shown were derived by the addition of the $A\beta_{40}$ and $A\beta_{42}$ values reported.

- 1. Matsubara E, Ghiso J, Frangione B, et al. Ann. Neurol. 1999;45:537-41
- 2. Lannfelt L, Basun H, Vigo-Pelfrey C, et al. Neuroscience Letters 1995;199:203-06.
- 3. DeMattos RB, Bales KR, Parsadanian M, et al. J. Neurochem. 2002;81:229-36.
- 4. Kawarabayashi T, Younkin LH, Saido TC, et al. J. Neurosci. 2001;21:372-81.

Apolipoprotein E

- 34 kDa glycoprotein
- produced in high levels in liver and brain
- synthesized by glia in brain (predominantly astrocytes)
- present in lipoprotein particles in the CNS which are HDL-like
- exists in 3 common isoforms in humans

	<u>112</u>	<u>158</u>
<mark>E2</mark>	cys	cys
E3	cys	arg
E4	arg	arg

ApoE and Alzheimer's Disease

 Epsilon 4 allele of Apolipoprotein E is a genetic risk factor for Alzheimer's disease and cerebral amyloid angiopathy Strittmatter et. al.Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977-81 Saunders et. al. Neurology. 1993 Aug;43(8):1467-72 Corder et. al. Science. 1993 Aug 13;261(5123):921-3 Rebck et al. Neuron. 1993 Oct;11(4):575-80

2. Increased levels of cortical and vascular $A\beta$ in AD patients with an E4 isoform

Schmechel et. al. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9649-53

3. In vitro findings demonstrate numerous apoE isoform specific interactions with $A\beta$ as well as CNS cells

Strittmatter et. al.Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977-81 LaDu et. al. J Biol Chem. 1994 Sep 23;269(38):23403-6 Puttfarcken et. al. J Neurochem. 1997 Feb;68(2):760-9 DeMattos et. al. J Biol Chem. 1998 Feb 13;273(7):4206-12

Murine apoE facilitates fibrillar Aβ (amyloid) formation and toxicity

PDAPP, apoE +/+

PDAPP, apoE -/-

One year of age

Bales et al., Nat. Genet., 1997; Holtzman et al, PNAS, 2000

Aβ stain

thioflavine-S stain for fibrillar Aβ Effects of human apoE isoforms on Aβ-related pathology in APP transgenic mice

Transgenic Breeding Scheme

Hippocampal Aβ levels are suppressed in PDAPP mice expressing human apoE isoforms apoE3 > apoE4

Holtzman et al., JCI, 1999 Holtzman et al., PNAS, 2000 Fagan et al., Neurob. Dis. 2002

ApoE Hypothesis

Hypothesis: Human apoE isoforms influence Aβ deposition in vivo via the following mechanisms:

- Human apoE isoforms facilitate clearance of the beta amyloid peptide from the brain. (Endocytic and/or chaperone to the plasma compartment)
- 2. At a critical beta-amyloid concentration, apoE will induce fibril formation.

ApoE/Aβ Therapeutics

Main Question: Do we want to increase or decrease expression of human apoE in brain with regard to Aβ deposition and related pathology?

* Is more human apoE good or bad?
- Isoform differences?
- Time differences?

(All animals are Homozygous for the PDAPP transgene)

Mouse apoE Knock-out (eKO)

Heterozygous for GFAP-apoE3 transgene (E3+/-)

Homozygous for GFAP-apoE3 transgene (E3+/+)

ApoE KO and human ApoE Transgenic mice were analyzed at multiple ages

3 Months

6 Months

12 Months

15 Months

Analysis

-CSF and Plasma -½ Brain for Biochemistry (hippocampus and cortex) -½ Brain for Histochemistry

Sample Analysis

<u>CSF</u>	<u>Plasma</u>	<u>Hippocampus</u>	<u>Cortex</u>	<u>Fix Brain</u>
CSF Aβ40	Plasma Aβ40	Soluble A _{β40}	Soluble A _{β40}	Pan Aβ Thio-S Silver
CSF Aβ42	Plasma Aβ42	Soluble A _{β42}	Soluble A _{β42}	
		Soluble A _β Total	Soluble A _β Total	
		Soluble Oligo Aβ	Soluble Oligo Af	3
		Insoluble Aβ40	Insoluble Aβ40	
		Insoluble Aβ42	Insoluble Aβ42	

*Serial extraction procedure: carbonate soluble and then guanidine extraction (insoluble)

Hippocampal Aβ Load in 12-15 Month Old PDAPP Mice: apoE3 decreases Aβ deposition in a dose-dependent fashion

Frequency Distribution of Hippocampal Aβ load in PDAPP,ApoE3+/+ Expressing Mice

Distribution of Hippocampal Aβ Load in ApoE3+/- and mApoE KO Mice

ApoE3 decreases percent Aβ load in a dosedependent fashion in PDAPP mice at 12 to 15 months of age

ApoE3+/+

ApoE3+/-

mApoE KO

Aβ Immunostaining

Are there differences in $A\beta$ metabolism prior to deposition in PDAPP mice expressing varying levels of apoE3 that may underlie the variation in the amount of $A\beta$ deposition seen at later ages?

Analysis of soluble Aβ in young (3 to 6 month old) transgenic animals

 $CSF A\beta 40$

p = 0.0009 (ANOVA)

p = 0.0017 (ANOVA)

Analysis of soluble Aβ in young (3 to 6 month old) transgenic animals

Plasma Aβ40

Analysis of soluble Aβ in young 3 to 6 month old PDAPP mice: ApoE3 decreases the CSF:plasma Aβ42 ratio

CSF:Plasma Aβ40

CSF:Plasma Aβ42

p = 0.0267 (ANOVA)

Analysis of carbonate soluble hippocampal Aβ in 3 – 6 month old PDAPP mice: ApoE3 decreases Aβ

Soluble Aβ40

Soluble Aβ42

p = 0.0001 (ANOVA)

p = 0.0305 (ANOVA) Analysis of carbonate insoluble hippocampal Aβ in 3 – 6 month old PDAPP mice: ApoE3 decreases Aβ

Insoluble Aβ40

Insoluble Aβ42

p = 0.0078 (ANOVA)

p = 0.0005 (ANOVA)

Summary

- 1. In order to understand the mechanisms underlying the effects of human apoE on A β metabolism and AD risk, it is critical to assess the A β levels in different compartments both prior to and after amyloid deposition.
- 2. We identified an apoE3 gene dose effect for A β deposition: E3-/- > E3+/- > E3+/+
- 3. The gene dose effect can be identified for soluble and insoluble Aβ concentrations in multiple CNS compartments in young pre-depositing PDAPP mice.
- **4.** These results support the hypothesis that apoE3 facilitates CNS Aβ clearance.

How can we therapeutically increase the expression of ApoE?

Goal: To pharmacologically increase apoE expression/secretion in CNS by astrocytes.

LXR/RXR Heterodimer Regulates ApoE Expression in CCF-STTG1 Cells

Liang, Y. et al J. Neurochem 88:623-634, 2004

In Vivo Regulation of ApoE in Hippocampus Western Blot Analysis

Does Acute Increases in ApoE Levels Modify CNS Aβ Metabolism? (7 Day Acute apoE3 TR-PDAPP^{+/-} Study)

Mice: 3 month apoE3^{+/+}-PDAPP^{+/-}

Treatment:

(7 day treatment):

12 Vehicle 12 T-0901317 50mg/kg

Live Phase:

- Oral dosing daily
- CSF and Plasma isolated
- Hippocampus, cortex, and cerebellum from both hemispheres were dissected

Sample Analysis:

- Samples processed all at same time
- CSF and plasma ELISA's: $A\beta_{40}$, $A\beta_{42}$, and $A\beta_{Total}$
- Tissue samples: serial extraction (PBS, carbonate, and guan.)
- Tissue ELISA's: $A\beta_{40}$ and $A\beta_{42}$
- Human apoE levels via ELISA

7 Day Acute ApoE3 TR-PDAPP+/- Study

Carbonate Extraction Cortex

Carbonate Extraction Hippocampus

7 Day Acute ApoE3 TR-PDAPP+/- Study

In-vitro Assay: Removal of Aβ by Exogenous Astrocytes

Frozen PDAPP mouse brain section

ApoE-Dependent Degradation of Aβ in Brain Slices by Astrocytes

medium only

adult WT

adult apoE^{/-}

neonatal WT

ApoE-Dependent Degradation of Aβ in Brain Slices by Astrocytes

ImmunoHistochemistry

ELISA

ApoE-Dependent Degradation of Aβ by Astrocytes

α-apoE + WT Control + WT Astrocytes Astrocytes

RAP Blocks Astrocyte-Mediated Aβ Degradation

Receptor Associated Protein

*39 kDa intracellular chaperone which assists with protein folding

*When added exogenously effective (200nM-1mM) antagonist of known LDLR receptors

Multicellular Astrocyte Aggregates Form in Response to Aβ Deposits In <u>Vitro</u>

Acknowledgments

Eli Lilly

Steven Paul Kelly Bales JC Dodart Patrick May **Bruce** Gitter **Guoqing Cao** Peggy Racke Matt Bryan **Cindy Delong**

Washington University

David Holtzman Maia Parsadanian Mark O'Dell Jennie Taylor John Cirrito John Fryer Rich Hartman Bob Brendza

Replacement of ApoE3 Particles Restores Aβ Degradation

