Cholesterol, APOE, and Aß in cell and animal models of Alzheimer's disease

G. William Rebeck

Georgetown University

Connections between cholesterol and Alzheimer's disease

- APOE
- Epidemiology
 - Increased risk of AD associated with high cholesterol in mid-life
 - Decreased risk of AD associated with use of statins
- Cell culture
 - High cholesterol more Aß
 - Low cholesterol less Aß

Connections between cholesterol and Alzheimer's disease: animal models

- Niemann-Pick type C disease
 Intracellular cholesterol transport
- Statin treatment of TgAPP mice
 Cholesterol lowering drugs
- High cholesterol diets for TgAPP mice

Niemann Pick type C disease

Burns et al, J Neurosci (2003) 23:5645

Atorvastatin (Lipitor) reduces brain Aß in PS-APP mice Aß40 AB42 1000 500 pmol/g ٠ 600 300 200 100 control control statin statin n=10 n=6 n=10 n=6 p<0.005 p<0.00005

Petanceska, 2003

High cholesterol diet increases brain Aß in PS-APP mice

Aß detection by IP/mass spectroscopy

Refolo, 2000

Brain Aß levels are modulated by hypercholesterolemia and a cholesterol-lowering drug

Refolo, 2001

Georgetown University

Hyang-Sook Hoe Mark Burns Geetanjali Chakraborty Chris Harris Casandra Cartagena

Yasuji Matsuoka

Paul Aisen

Suzana Petanceska Karen Duff

Brad Hyman Mike Irizarry Amy Deng

How to detect effects on brain cholesterol

- Most brain cholesterol is in myelin
 Measure non-myelin lipids
- Alterations in brain cholesterol affect cholesterol homeostasis genes
 - Cleavage of SREBP to regulate gene transcription
 - Generation of oxysterols to regulate gene transcription

Proteolysis of SREBP by low cholesterol levels

LDL receptor HMG CoA reductase

(reminiscent of APP proteolysis)

Induction of LXR by high cholesterol levels

Induction of genes in neuroblastoma cells by LXR activation: gene chip analysis of mRNA

fold change

4.2

2.6

2.3

1.7

1.7

ARC-G1

- ABC-A1
- SREBP-1
- Fatty acid CoA ligase
- Stearoyl CoA desaturase

ApoE levels are altered by LXR agonists and cholesterol

TO TO/RA control RA

BV-2 cells

primary glial cultures

Activation of LXR induces cholesterol efflux to apoE

APOE genotype alters levels of SREBP cleaved fragment

GFAP-APOE mice (APOE replacement mice)

Diet and a cholesterol-lowering drug affect brain APOE mRNA

Treatment Plasma Cholesterol (mg/dl)

High cholesterol	200
Vehicle	75
BM 15.766	28

Petanceska, 2004

Brain-permeable statins affect brain cholesterol

Synaptosomal Plasma Membrane Cholesterol (% control)

APOE-ε4 increases brain Aβ levels

GFAP-APOE mice (APOE replacement mice)

Statins decrease brain Aß

How could effects on brain cholesterol alter Aß levels?

Effects on membrane (like SREBP)
 – APP is transmembrane

 α -, β -, γ -secretases are transmembrane proteins

Effects on gene expression (downstream)
 Cholesterol equilibrium mechanisms

APOE affects γ-secretase activity in lipid rafts

Arbitrary Inits

Cholesterol could affect Aß levels through induction of LXR

system

Activation of LXR increases secreted AB42 levels

Aß42 levels

24 hours

48 hours

Therapeutic potential for statin treatment? importance of blood brain barrier?
Testing of other cholesterol-altering drugs?
Potential for dietary reduction in cholesterol?
APOE genotype-statin interactions?

24-Hydroxycholesterol induces ABCA1 expression in Neuro2A cells

con 22OH 24OH 24OH RA RA

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Burns et al, J Neurosci (2003) 23:5645

APOE genotype alters cholesterol hydroxylation

Ben Wolozin

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Tontonoz and Mangelsdorf, 2003

Niemann Pick type C

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Burns et al, J Neurosci (2003) 23:5645

