Verification Bias in Studies on the Accuracy of the Clinical Diagnosis of Alzheimer's Disease

X.H. Andrew Zhou, Ph.D

Professor, Department of Biostatistics, University of Washington Co-investigator and Senior Biostatistician, NACC, University of Washington

Gold standard on the diagnosis of AD

- Histopathology is the most commonly accepted gold standard on AD
- Three histopathological diagnoses

1)The Khachaturian criteria

2)The Consortium to Establish a Registry for Alzheimer Disease (CERAD) criteria.

3)The National Institute on Aging (NIA)-Reagan Institute Consensus Conference.

• If a subject does not have postmortem data, the subject will not have a gold standard diagnosis on AD.

Analytic Goal

• Assessment of the accuracy of clinical diagnoses when some subjects do not have a gold standard.

NACC Minimum Data Set

- The National Alzheimer Coordinating Center (NACC) maintains a cumulative database on subjects from approximately 30 NIA-funded AD centers.
- Clinical data are available for nearly all subjects, but postmortem data are only available for those who died and underwent autopsy.

Our data set

- We selected a subset of all subjects with a clinical diagnosis of dementia from NACC Minimum Data Set
- We dichotomized the clinical diagnoses into AD and non-AD dementia.
- Those subjects with autopsy were also classified by neuropathology (NP) under the CERAD criteria, used as the gold standard, into AD and non-AD dementia.

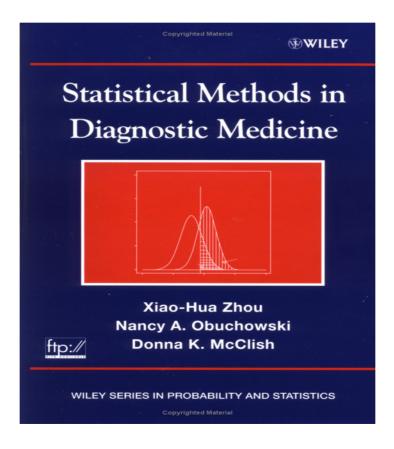
Data

	Clinical Diagnosis		
True Dx verified based on CERAD	AD	Non AD	Total
AD	1992	200	2192
No AD	261	216	477
Unknown	27521	6136	33657
Total	29774	6552	36326

Accuracy of Diagnostic Tests

- Binary-scale: sensitivity, specificity, positive and negative predictive values.
- Sensitivity is the probability that the clinical diagnosis would be AD given the true status is AD
- Specificity is the probability that the clinical diagnosis is non-AD given the true status is Non-AD
- Ordinal-scale or continuous-scale: ROC curves.

Textbook on Statistical Methods in Diagnostic Medicine



Naïve approach

- The naïve approach for dealing with missing gold standards is to restrict the analysis to subjects with gold standard information, called "complete-data analysis".
- Using only the autopsy-verified sample (naïve approach),

	Estimate	(95% CI)
Sensitivity	.907	(.895, .919)
Specificity	.449	(.402, .496)

The fallacy of "complete-data" analysis

- The "complete-data" analysis assumes one can extrapolate necropsy material to the whole study population.
- However, the clinical diagnoses in those having necropsy can differ substantially from those who did not.
- In addition, subjects who died have a different disease trajectory than subjects who survived, despite clinical diagnoses of Alzheimer's disease.

Effects of Verification Bias

- To learn how verification bias works, let us look at a hypothetical example with 200 patients with dementia.
- All patients have a clinical diagnosis, either AD or not AD, but some of them do not have a gold standard.
- We want to estimate sensitivity and specificity of the clinical assessment test on AD.

Target population

- We assume that the true sensitivity and specificity of the clinical assessment are 80% and 90%, respectively, to be estimated.
- If all study subjects had died and had had autopsy results during the study, we would obtain the following table:

	Clinical Dx		
	AD	Not AD	Total
True Dx			
AD	80	20	100
Not AD	10	90	100
Total	90	110	200

Partial verification

- The chance that a patient with the clinical diagnosis of AD would die and undergo autopsy during the study is 50%.
- The chance that a patient with a clinical diagnosis of non-AD would die and undergo autopsy during the study is 20%.

Partial verification

• The following table contains the data with partial verification:

	Clinical Dx		
	AD	Not AD	Total
True Dx			
AD	40	4	44
Not AD	5	18	23
Unknown	45	88	133
Total	90	110	200

- Using only verified cases, Sens=40/(40+4)=0.91 and spec=18/(18+5)=0.78.
- True sensitivity was overestimated.
- Specificity was underestimated.

A special missing-data problem

- Verification Bias is a special type of missing data
- Without having a gold standard = missing value of the gold standard.

Missing-data mechanism

- Missing completely at random (MCAR): the reason for having missing data is not related to all variables in the study.
- This assumption would be violated if subjects who did not have autopsy were younger, on average, than subjects who did.

Missing-data mechanism, cont

- Missing at random (MAR): the reason for having missing data is only related to variables in the study that are completely observed. (This assumption would be violated if subjects with missing data on a particular variable tend to have lower (or higher) values on that variable than those with data present, after adjusting for other known characteristics).
- Non-MAR.

Taxonomy of missing-data methods

- "Complete-data" analysis: Procedures based on completely recorded units
- Single Imputation: substitute some reasonable values for each missing value and then proceed to do the analysis as if there were no missing data.

Single Imputation Methods

- Marginal Mean imputation: for each missing value on a given variable, substitute the mean for those cases with data present on that variable
- Conditional Mean imputation (regression imputation):

replace missing values by predicted values from a regression of the missing item on items observed for the unit, usually calculated from units with both observed and missing variables present.

- Stochastic regression imputation: replace missing values by a value predicted by regression imputation plus a residual, drawn to reflect uncertainty in the predicted value.

Problem of Single Imputation

• The single imputation methods suffers from a fundamental problem: analyzing imputed data as through it were complete data produces standard errors that are underestimated.

Multiple Imputation (MI) Method

- MI is a simulation technique to deal with missing data.
- The MI method imputes **several** probable results of neuropathologic examination to each un-verified subject, based in part on the distribution of observed results among verified subjects with similar characteristics.
- Then the method uses both complete and imputed data on all subjects with clinical assessments to obtain unbiased estimates of the sensitivity and specificity.

MI, cont

- MI is performed following three steps:
 - Imputation replace each missing value by m>1 plausible values. This step yields m complete data sets that differ in the imputed values.
 - Analysis Analyze each complete data set by a complete-data method. This step results in m sets of estimates and their standard errors.
 - Combination Combine the results by simple arithmetic rules. This step provides final estimates and standard errors taking into account the uncertainty involved in replacing missing with imputed data.

MI results

- The MI method using all subjects yields the following estimates:
- An estimated sensitivity of 0.884 with 95% confidence interval of (0.869,0.899) and
- An estimated specificity of 0.516 with 95% confidence interval of (0.459,0.571).

Conclusions

- The autopsy-only method consistently overestimated sensitivity and underestimated specificity of the clinical diagnosis of AD as compared to the MI method.
- The MI estimates show greater precision as a result of using all subjects

Current research

- In our research, we treated living AD and dead non-autopsy AD patients as the same.
- However, it is likely that the accuracy of clinical assessments is substantially greater among those who have died (because of longer f/u and potentially more clinical information on which to make the dx).
- We are working on new methods that can distinguish these two groups.

Acknowledgement

- NACC and University of Washington: Drs. Tom Koepsell and Bud Kukull
- University of Connecticut: Dr. Ofer Harel