Risk Factors for dementia, neuritic plaques, neurofibrillary tangles, and vascular amyloid in autopsied, aged Japanese-American men: HONOLULU-ASIA AGING STUDY

- Honolulu investigators: Helen Petrovitch, Web Ross, Kamal Masaki, Rob Abbott
- Neuropathologists: John Hardman (deceased), Daron Davis, Jane Uyehara-Lock, James Nelson, Bill Markesbery
- Collaborators: Lenore Launer, Chris Zarow, Helena Chui, Ann McKee
- PI: Lon White
- *Advisory Committee*: John Morris, David Knopman, Helena Chui

Supported by research contracts and grants from the National Institute on Aging, a private donation from a generous benefactor, and the Hawaii Community Foundation

The Honolulu-Asia Aging Study

- Started as the Honolulu Heart Program in 1965. N=8006 Japanese-American men born 1900-1919. Exams and tests for heart dis., stroke
- HAAS established 1991-93, 3734 examined for cognitive and motor function, dementia, stroke, and Parkinson's disease
- HAAS re-exams q 2-3 years x 5 more times; most recent exam cycle completed 2005

HONOLULU-ASIA AGING STUDY EXAMINATION CYCLES

	exam	YEAR	age range	Ν
• E	IHP/HAAS 4	1991-93	71-93yr	3734
• E	IHP/HAAS 5	1994-96	74-95	2705
• E	IHP/HAAS 6	1997-99	77-98	1991
• E	IHP/HAAS 7	1999-00	79-100	1523
• H	IHP/HAAS 8	2001-03	81-103	1200
• E	IHP/HAAS 9	2004-05	83-104	997

Cognitive Function Cognitive Abilities Screening Instrument (CASI)

- Developed for cross-national and crosscultural comparisons
- Composite of the Hasegawa, MMSE and 3MS (Evelyn Teng et al)
 - 9 cognitive domains
- Score range 0-100

HAAS research on AD; BRAIN AUTOPSY METHODS

- N~ 665 brain autopsies done to date, with complete info now available for 502.
- AD lesions observed by microscopic examination -- modified Bielschowski and Gallyas silver stains, and immunohistochemically for amyloid in vessels and plaques. Neocortical counts based on 20 fields chosen based on high neuritic plaque numbers.

35% of decedents diagnosed with dementia came to autopsy

17% of decedents *not* diagnosed with dementia came to autopsy

Autopsied decedents diagnosed with dementia are representative of all demented decedents

Autopsied decedents *not* diagnosed with dementia are representative of all non-demented decedents The only risk factors consistently associated with AD to date are advanced age, the Apo E4 allele, and possibly education

- This might reflect a heterogeneous or multi-factoral pathogenesis for the clinical condition.
- Use of the specific neuropathologic lesions as endpoints might allow the identification of additional or "new" risk factors.

Characteristics of 502 autopsied HAAS men -- Age at death

age (years)	Number	%
73-79	70	14
80-84	167	33
85-89	154	31
90-94	84	17
>= 95	27	5

Mean age = 85.7 years, s.d.= 5.2

Characteristics of autopsied HAAS subjects (Japanese-American men) Apolipoprotein E 4 zygosity

Negative for E 482%

Heterozygous

17%

Homozygous_

1%

Characteristics of autopsied HAAS subjects (Japanese-American men)

cognitively normal44 %marginal / uncertain23 %

DSM III-R demented 33 %

Characteristics of 502 autopsied HAAS subjects (Japanese-American men) Braak stage

stage	%
1	5
2	13
3	33
4	21
5	<i>19</i>
6	9

Characteristics of 502 autopsied HAAS subjects (Japanese-American men) neocortical neuritic plaques

	70	
negligible	50	
sparse	4 2	
moderate numbers	4	
high numbers	4	

0/

Characteristics of 502 autopsied HAAS subjects (Japanese-American men) neocortical neurofibrillary tangles

Negligible	<i>43</i>	
sparse	38	
moderate numbers	7	
high numbers with >=1 occipital	12	

%

Characteristics of 502 autopsied HAAS subjects (Japanese-American men) vascular amyloid index

%

0	None observed	50
1	few vessels involved	<i>40</i>
2	moderate	3
3	high number of vessels involved	7

Intercorrelations among AD lesion indices (Spearman coefficients)

	Braak stage	neocx NP	neocx NFT	vasc. amyloic
Braak stage	1.0000			
Neocx NP	0.43 p<.0001	1.0000		
Neocx NFT	0.59 p<.0001	0.58 p<.0001	1.000	
Vasc. Amyloi	d 0.29 p<.0001	0.61 p<.0001	0.42 p<.0001	1.0000

Ordinal logistic regression model dependent variable = normal, marginal or demented

Independent variable	OR	(95% CI)	<u>p</u>
Age at death	1.09	(1.05-1.13)	<.0001
Education	0.94	(0.89-0.99)	0.022
Apo E4 zygosity	1.52	(0.99-2.36)	0.057
intracranial volume	1.00	(0.99-1.01)	ns

Ordinal logistic regression model dependent variable = neocortical neuritic plaque index

Independent variable	OR	(95% CI)	<u>p</u>
Age at death	1.07	(1.03-1.11)	0.001
Education	1.04	(0.98-1.10)	ns
Apo E4 zygosity	3.37	(2.14-5.33)	<.0001
intracranial volume	1.00	(0.99-1.01)	ns

Ordinal logistic regression model dependent variable = neocortical NFT index

Independent variable OR (95% CI) p

Age at death1.02 (0.98-1.05)nsEducation0.97 (0.92-1.02)nsApo E4 zygosity2.23 (1.45-3.41)0.0002intracranial volume1.00 (0.99-1.01)ns

Ordinal logistic regression model dependent variable = vascular amyloid index

Independent variable OR (95% CI) p

Age at death	1.09	(1.05-1.13)	<.0001
Education	0.94	(0.89-0.99)	0.022
Apo E4 zygosity	1.52	(0.99-2.36)	0.057
intracranial volume	1.00	(0.99-1.01)	ns

the following candidate risk factors have been weakly linked to at least one of the AD neuropathologic lesion indices in ordinal logistic regression models:

- Elevated midlife BP (stronger for NFT)
- Moderate (but not very high) lifetime cigarette smoking
- Diabetes and/or glucose-insulin dysregulation
- Elevated HDL levels, likely related to low Apolipoprotein A1 levels
- Family history of Down syndrome

No significant association with the neuropathologic lesions of AD have been identified for the following candidate risk factors:

Midlife or late life coronary heart disease; history of stroke; orthostatic hypotension; ankle-arm blood pressure ratio; use of anti-hypertensive meds.

late life fibrinogen levels or wbc counts; use of NSAIDS or aspirin; levElevated midlife BP (stronger for NFT).

Self-reported childhood personality or scholastic performanc; childhood residence; birth order.Midlife alcohol consuption; history of shingles or warts.

Conclusions

- Advanced age and the Apo E4 allele are associated with AD neuropathologic lesions.
- Education and head size (intracranial volume are not associated with NP, NFT, or CAA in HAAS men.
- Weak associations with AD lesions are observed for midlife hypertension, moderate smoking, glucose-insulin dysregulation, and possibly elevated HDL or low apoA1 levels.
- No other risk factors have been linked to AD lesions to date in analyses controlling for age and ApoE4 zygosity.