Sample size calculations for comparing rate of decline

Steven D. Edland, Ph.D.

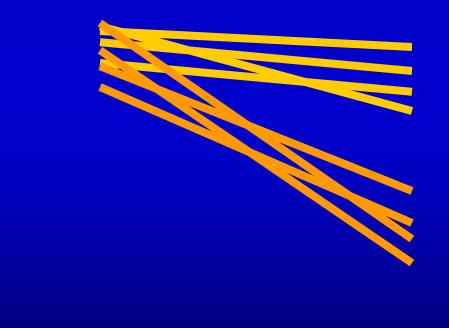
ADC Data Core Meeting, Bethesda, MD

October 6, 2007

E.g., use ADC data to power rate of decline analysis for:

cohort studies
clinical trials
grants to analyze existing data (NACC proposals)

E.g., AD treatment trial Outcome: MMSE



E.g., Cohort Study (Wilson, Bennett et al. Neuroepidemiology 2006;26:61-67)

Table 2. Relation of odor identification score to baseline level of function and annual rate of change in different cognitive domains

Cognitive domain	Model term	Estimate (SE)	p value
Perceptual speed	Time	-0.071 (0.016)	< 0.001
	Odor identification	0.089 (0.016)	< 0.001
	$Odor \times time$	0.015 (0.006)	0.013
Episodic memory	Time	-0.045 (0.016)	0.004
	Odor identification	0.085 (0.012)	< 0.001
	$Odor \times time$	0.012 (0.006)	0.030
Semantic memory	Time	-0.056 (0.014)	< 0.001
	Odor identification	0.081 (0.011)	< 0.001
	$Odor \times time$	0.007 (0.005)	0.156
Working memory	Time	-0.049 (0.019)	0.009
	Odor identification	0.074 (0.014)	< 0.001
	$Odor \times time$	0.012 (0.007)	0.084
Visuospatial ability	Time	-0.007 (0.022)	0.751
	Odor identification	0.059 (0.014)	< 0.001
	$Odor \times time$	-0.003 (0.008)	0.667

Estimates are from mixed-effects models adjusted for age, sex, and education and indicate the effect of a 1-point change in odor identification score.

Possible Analytic Methods

- Least Squares 'Summary Measure'
- Random Effects Model / reml
- Marginal Model / gee

Least Squares 'Summary Measure'

- aka the NIH method
- aka 'two-stage' analysis
- Cook and Ware: "we recommend this two-stage analysis both for its efficiency and ease of interpretation." (*Annual Review of Public Health.* 1983; 4:1-23)

Least Squares 'Summary Measure'

- Esp. good for prevalent case data less prone to spurious findings (Milliken & Edland, SIM 2000) useful for describing relationship between stage of disease and rate of decline (e.g. Morris, Edland et al. Neurol 1995) Power using t-test formula
- (Schlesselman, 1971)

Power Formulas

- Random Effects Model / reml
- Marginal Model / gee

Power formula - RE model *(Hartley and Rao Biometrics;1966)

N/Arm = $2[X'V^{-1}X]_{2,2}^{-1}(z_{1-\alpha/2} + z_{1-\beta})^2 / \Delta^2$

where

- $X = (1, t) = the \ design \ matrix$
- V = Var(Y)
- \[\Lambda = detectable effect size = detectable difference in mean rate of decline
 balanced data, Var(Y) assumed known

*(Liu and Liang Biometrics;1997)

N/Arm ~ $2[XV^{-1}X]_{2,2}^{-1}(z_{1-\alpha/2} + z_{1-\beta})^2 / \Delta^2$

where

- $X = (1, t) = the \ design \ matrix$
- V = Var(Y)
- \[\Lambda = detectable effect size = detectable difference in mean rate of decline
 balanced data, Var(Y) assumed known

*Choices described for Var(Y):

unstructured
 of form σ²R, R = Cor(Y)
 compound symmetry

autoregressive

*Liu and Liang Biometrics (1997); see also Rochon SIM (1998), Jung and Ahn SIM (2003), and others

*Choices described for Var(Y):

unstructured
 of form σ²R, R = Cor(Y)
 compound symmetry
 autoregressive

*Liu and Liang Biometrics (1997); see also Rochon SIM (1998), Jung and Ahn SIM (2003), and others

$Var(Y) = \sigma^2 R$ implies parallel line trajectories

AD trajectories fan apart

Simulation study:

Power using AD pilot data and compound sym. assumption (ADAS-cog, Δ =1.2, power = 80% and 90%)

Simulate true power (given slopes fan apart)

 Nominal power
 (Sample Size)
 Observed Power

 80%
 (m=104)
 24%

 90%
 (m=139)
 30%

Therefore,

Use *V* = *Var*(*Y*) implied by model with random intercepts *and* random slopes:

N/Arm = $2[X'V^{-1}X]_{2,2}^{-1}(z_{1-\alpha/2} + z_{1-\beta})^2 / \Delta^2$

$V = V(Y_i) = Var(\alpha_i + \beta_i t_{ij} + \varepsilon_{ij}) = \dots$

 $V^{-1} = ...$

 $[X V^{-1}X]^{-1} = \dots$

 $N/Arm = \dots$

where

 $\sigma^2 = \sigma_{\beta}^2 + \sigma_{\epsilon}^2 / \Sigma (t - t.)^2$

where

 $\sigma^{2} = \sigma_{\beta}^{2} + \sigma_{\epsilon}^{2} / \Sigma (t - t.)^{2}$ Variance of random slopes

where

 $\sigma^2 = \sigma_{\beta}^2 + \sigma_{s}^2 / \Sigma (t - t.)^2$

Residual error variance

where

 $\sigma^2 = \sigma_\beta^2 + \sigma_s^2 / \Sigma (t - t.)^2$

Estimable by random effects model fit to pilot data

sample pilot data model fit

```
>lme(y~time, random = ~time|id)
```

```
Linear mixed-effects model fit by REML
```

```
Random effects:
Formula: ~time | id
```

```
StdDev Corr
(Intercept) 5.575794 (Intr)
time 2.382019 0.158
Residual 3.028220
```

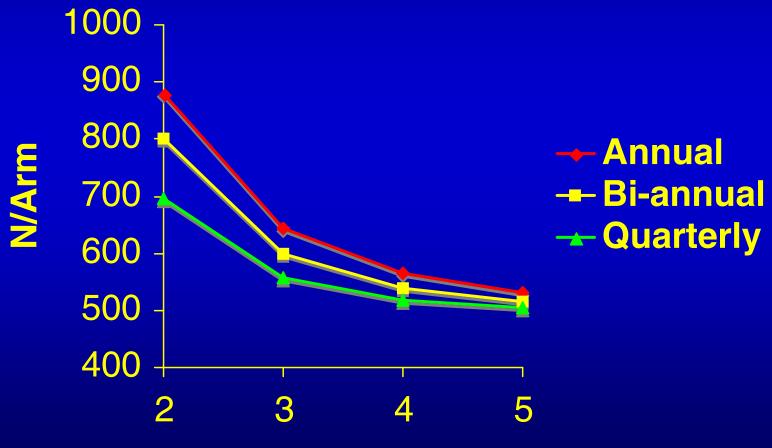
Fixed effects: y ~ time Value Std.Error DF t-value (Intercept) 16.706180 0.5945337 599 28.099634 time 1.637609 0.2642732 599 6.196652

where

 $\sigma^2 = \sigma_{\beta}^2 + \sigma_{\epsilon}^2 / \Sigma (t - t.)^2$

Determined by Study Design

N/Arm as a function of design (Alzheimer's treatment trial, outcome = ADAS-cog, effect size = 33% reduction in mean slope)



Years followup

where

 $\sigma^2 = \frac{\sigma_{\beta}^2}{\rho^2} + \frac{\sigma_{s}^2}{\Sigma(t - t.)^2}$

Varies by Instrument

Sample Size, *Prevention Trial* with Biannual Sampling, 2 or 3 Year Followup, 6 Month Sampling Interval, Effect Size = 50% Reduction in Mean Slope, Power = 90%

	Mean		~	N/Arm	
	Slope	σ_{β}	σ _ε	2Yr	3Yr
Word List Delayed Rec.	17	0.20	1.27	1985	784
WMSR LM I	.73	1.18	2.44	595	354
WMSR LM II	.89	1.20	2.48	415	247

(Pilot data courtesy OHSU ADC, Jeffery Kaye Director)

- increase N to account for expected dropout rate
- Pilot data should be representative of study population (else, see Liu and Liang 1977 for covariate weighted power formula)

Conclusions: 1

- Sample size can be dramatically underestimated when the compound symmetric model is used
- E.g., Alzheimer treatment trial setting:
 - Nominal power = 90%
 - Actual power = 30%

Conclusions: 2

The covariance structure implied by a random intercepts, random slopes model:

- is more consistent with typical longitudinal data
- can be expressed in terms of σ_{β}^2 and σ_{ϵ}^2 (easily estimated from pilot data)
- leads to heuristically appealing power formula