

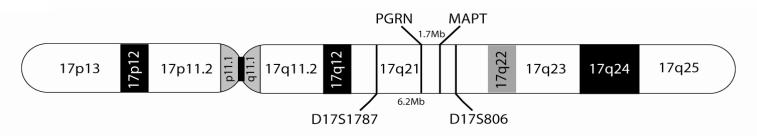
Progranulin mutations in FTD -From molecule to phenotype

Michael Hutton Ph.D. Dept. of Neuroscience Mayo Clinic Jacksonville

Current address: Merck Research Laboratories 33 Avenue Louis Pasteur Boston, MA 02115

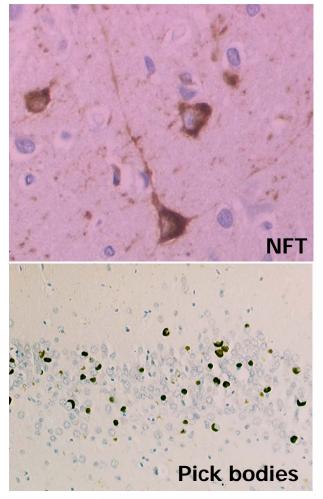
Identification of *PGRN* mutations

nature

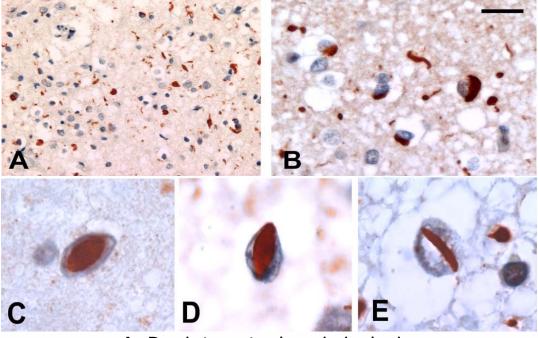

Published online July 16th 2006 (442, 916)

Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17

Matt Baker¹*, Ian R. Mackenzie²*, Stuart M. Pickering-Brown^{5,6}*, Jennifer Gass¹, Rosa Rademakers¹†, Caroline Lindholm³, Julie Snowden⁶, Jennifer Adamson¹, A. Dessa Sadovnick^{3,4}, Sara Rollinson⁵, Ashley Cannon¹, Emily Dwosh⁴, David Neary⁶, Stacey Melquist¹, Anna Richardson⁶, Dennis Dickson¹, Zdenek Berger¹, Jason Eriksen¹, Todd Robinson¹, Cynthia Zehr¹, Chad A. Dickey¹, Richard Crook¹, Eileen McGowan¹, David Mann⁶, Bradley Boeve⁷, Howard Feldman³ & Mike Hutton¹

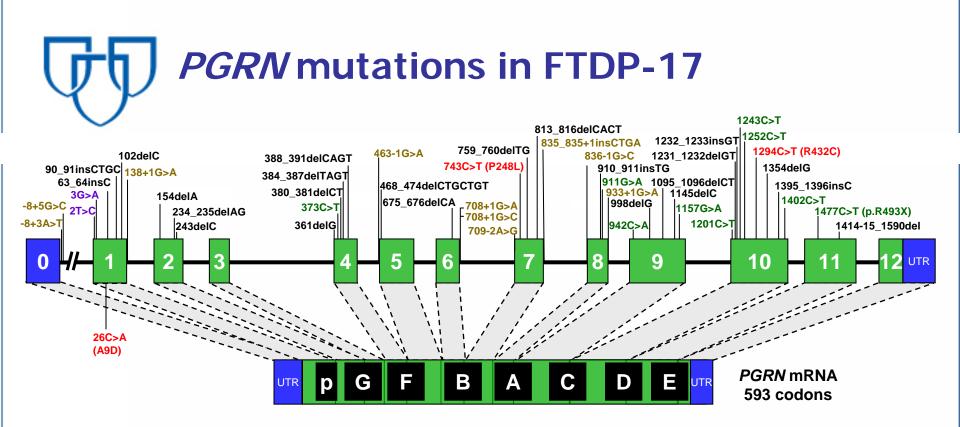

Null mutations in progranulin cause ubiquitinpositive frontotemporal dementia linked to chromosome 17q21

Marc Cruts^{1,2,5}, Ilse Gijselinck^{1,2,5}, Julie van der Zee^{1,2,5}, Sebastiaan Engelborghs^{3,5,6}, Hans Wils^{1,2,5}, Daniel Pirici^{1,2,5}, Rosa Rademakers^{1,2,5}, Rik Vandenberghe⁷, Bart Dermaut⁹, Jean-Jacques Martin^{4,5}, Cornelia van Duijn¹⁰, Karin Peeters^{1,2,5}, Raf Sciot⁸, Patrick Santens⁹, Tim De Pooter^{1,2,5}, Maria Mattheijssens^{1,2,5}, Marleen Van den Broeck^{1,2,5}, Ivy Cuijt^{1,2,5}, Krist'I Vennekens^{1,2,5}, Peter P. De Deyn^{3,5,6}, Samir Kumar-Singh^{1,2,5} & Christine Van Broeckhoven^{1,2,5}



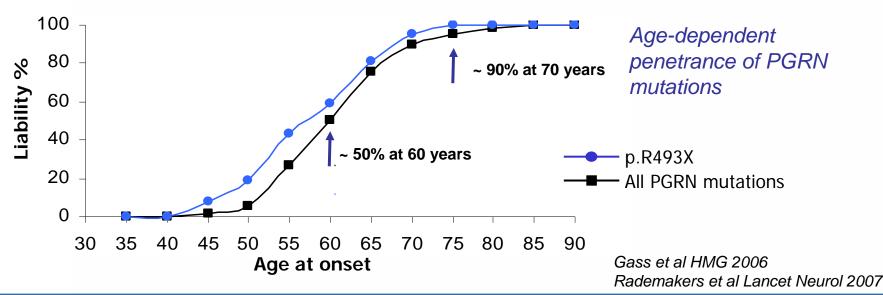
Mutations in *MAPT* (tau) *and Progranulin* explain histopathological subtypes in FTDP-17

p-tau (MAPT mutations)

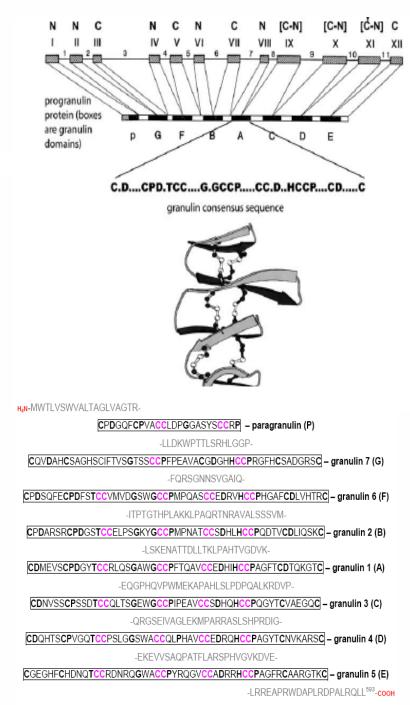


Ubiquitin/TDP-43 (PGRN mutations)

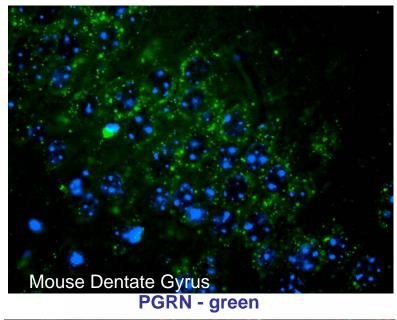
A, B – intracytoplasmic inclusions C,D,E – intranuclear inclusions

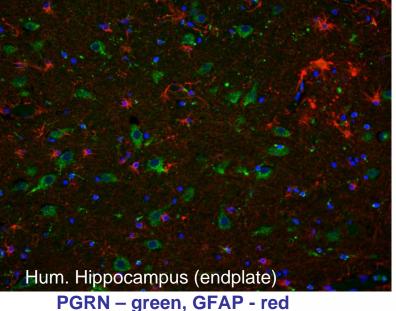

NO *MAPT* mutations in families with ubiquitinpositive inclusion pathology

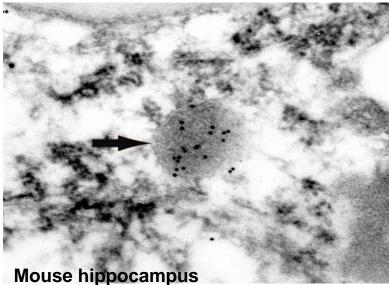
- All mutations cause partial loss of functional PGRN (haploinsufficiency)
 47 mutations reported to date
 - 47 mutations reported to date
 - 2 Kozak sequence mutations (p.M1?)
 - 3 Missense changes (loss of protein function)
 - 10 Splice site mutations
 - 23 Small in/del mutations that cause frame shifts
 - 9 Nonsense mutations (most common mutation is p.493X)

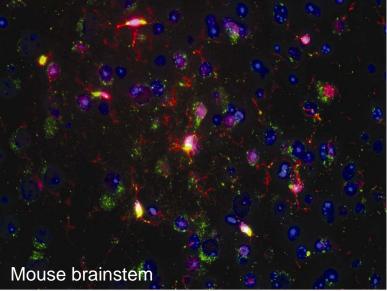

Penetrance and clinicopathologic features associated with *PGRN* mutations

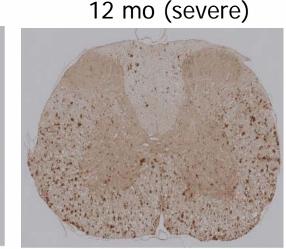
- Frequency 5.4% (10/185) in Mayo Clinic ADRC referral FTD series
 - 13.1% in cases with positive family history
- Mean age at onset 59 ± 7 years (range 48-83)
- FTD and Primary Progressive Aphasia most frequent initial clinical diagnoses
 - ~80% of carriers develop progressive language impairment during course
 - ~70% of *PGRN* mutation carriers develop Parkinsonism during disease course
 - Motor neuron disease features are very rare
- Ubiquitin/TDP-43 cytoplasmic and intranuclear inclusions in all with autopsy




PGRN is a pluripotent mitogenic factor


- PGRN is reported to be a 68.5 kDa secreted growth/mitogenic factor composed of 7.5 tandem repeats of a 12 cysteine motif (granulins, GRNs)
- PGRN can be processed to 6KDa GRNs peptides by extracellular protease (elastase)
- Regulates cell cycle progression and cell motility in multiple tissue remodeling processes including development and wound healing
 - PGRN and GRNs have opposing actions in regulation of wound repair
- PGRN overexpression associated with tumorigenesis (growth and invasion)
- PGRN is upregulated in activated microglia in neurodegenerative disease

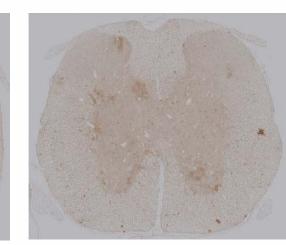

PGRN is expressed in neurons and microglia but not in astrocytes or oligodendrocytes (Dennis Dickson/Eileen McGowan)


PGRN – immunogold labelling

PGRN – green, IBA1 (microglia) - red

PGRN in spinal cord in tau (P301L) transgenic mice (JNPL3)

2 mo (unaffected)



Massive upregulation of PGRN in microglia observed with development of tau pathology and neurodegeneration in JNPL3 mice (12months)

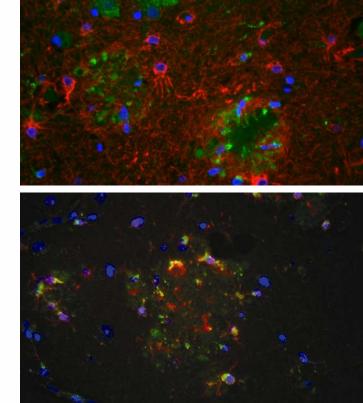
Non-Tg mice

JNPL3

(P301L)

Increase in neuronal PGRN expression with aging in Non-Tg mice (note darker staining in gray matter)


Jason Eriksen

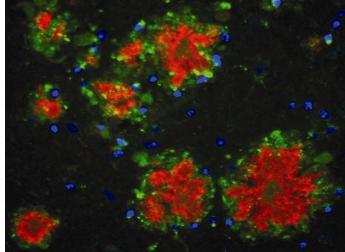

http://mayoresearch.mayo.edu/mayo/research/hutton_lab

• PGRN accumulates around amyloid plaques in Alzheimer's disease and transgenic mice

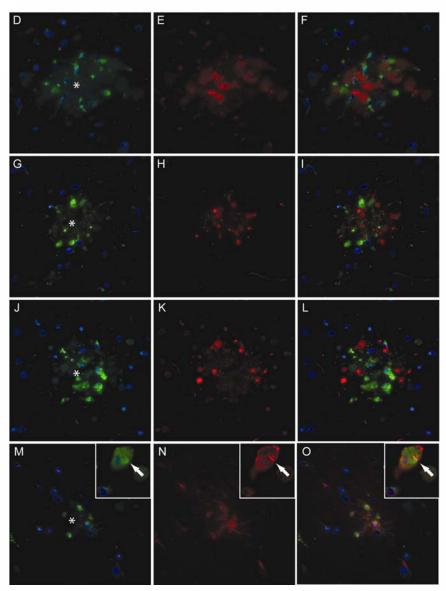
PGRN IHC

Human AD

Astrocytes (Red)


APP Tg mouse

> microglia (Red)

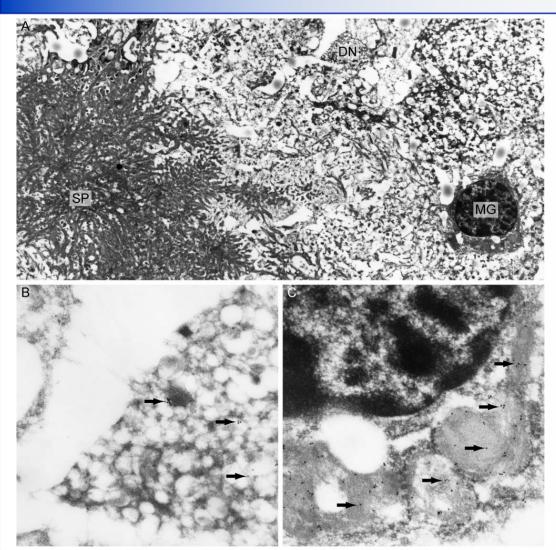

Human AD

PGRN (Green) Aβ (Red) *APP Tg*

mouse

PGRN IR is predominantly localized to microglia around amyloid plaques in human AD

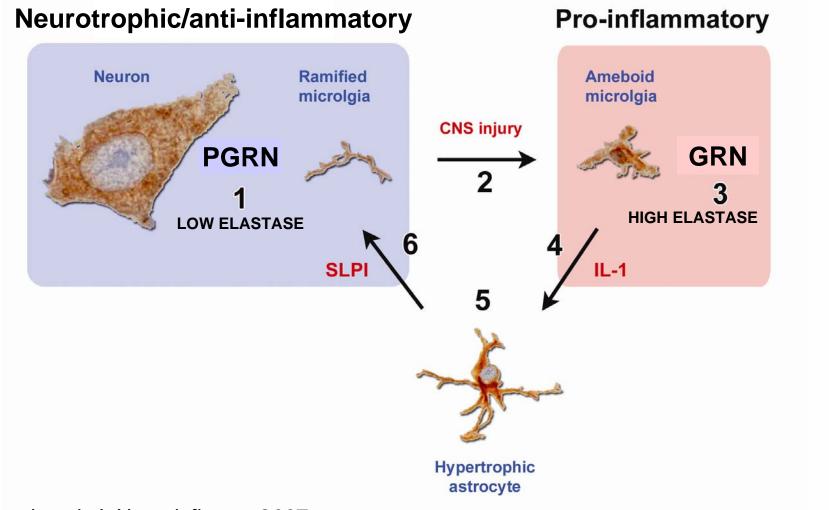
APP (dystrophic neurites)


Tau (dystrophic neurites)

Ubiquitin (dystrophic neurites)

HLA-DR (microglia)

Amy Innes Zeshan Ahmed

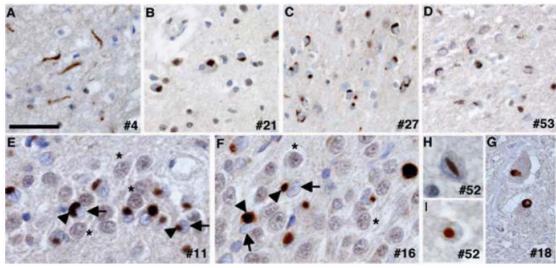

PGRN is localized to lysosomal structures in activated microglia

- A. Low power of Senile plaque (SP)
- B. Dystrophic neurite (DN)
 - Diffuse cytoplasmic staining
- C. Activated microglia (MG)
 - Gold particles over lysosomal endosomal structures

Wen-Lang Lin

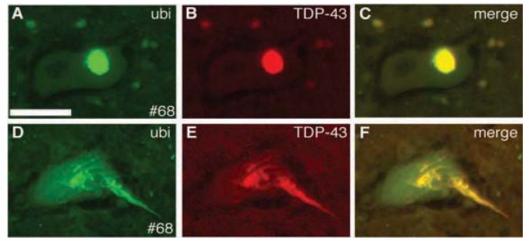
PGRN may regulate repair/inflammatory response to brain injury – as in periphery

Ahmed et al. J. Neuroinflamm. 2007


Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis

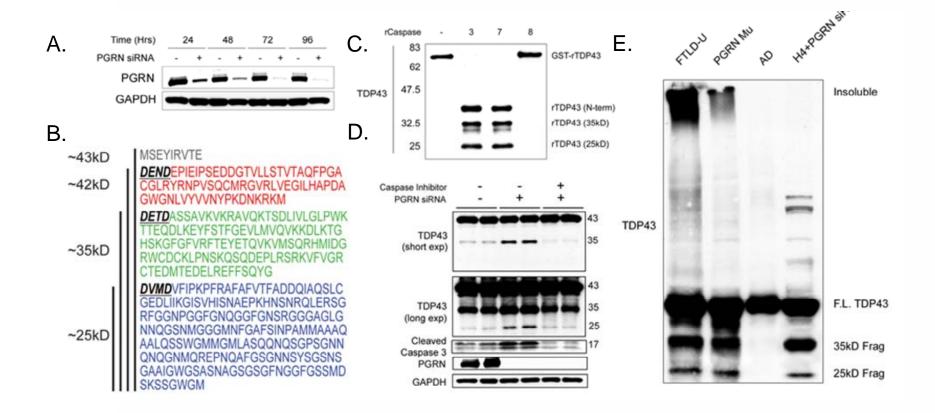
(2006) 314, 130 - 133

FTLD-U


Manuela Neumann,^{1,11*} Deepak M. Sampathu,^{1*} Linda K. Kwong,^{1*} Adam C. Truax,¹ Matthew C. Micsenyi,¹ Thomas T. Chou,² Jennifer Bruce,¹ Theresa Schuck,¹ Murray Grossman,^{3,4} Christopher M. Clark,^{3,4} Leo F. McCluskey,³ Bruce L. Miller,⁶ Eliezer Masliah,⁷ Ian R. Mackenzie,⁸ Howard Feldman,⁹ Wolfgang Feiden,¹⁰ Hans A. Kretzschmar,¹¹ John Q. Trojanowski,^{1,4,5} Virginia M.-Y. Lee^{1,4,5}†

(including PGRN cases)

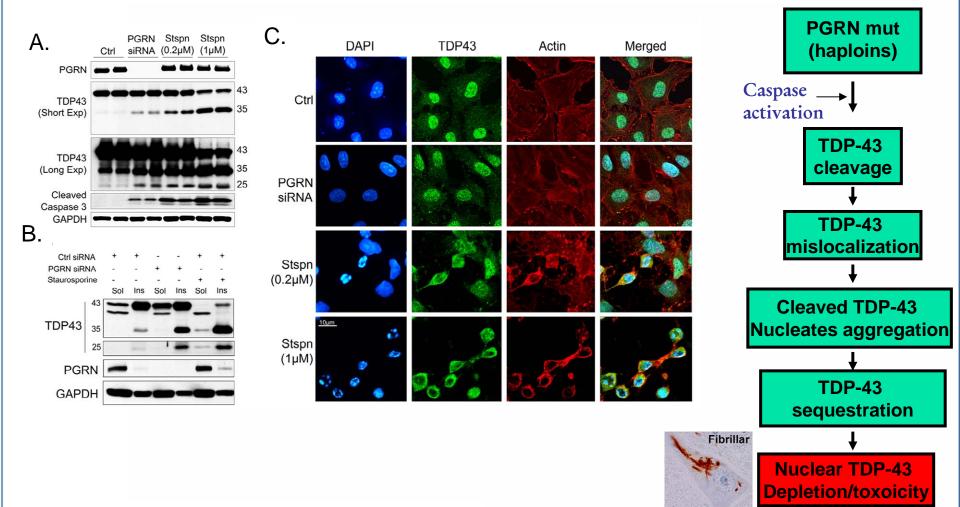
Idiopathic ALS (NOT SOD1 cases)


Indicates that FTLD-U (including PGRN cases) and ALS belong to a clinicopathologic spectrum of neurodegenerative diseases.

Progranulin Mediates Caspase-Dependent Cleavage of TAR DNA Binding Protein-43

Yong-Jie Zhang,1* Ya-fei Xu,1* Chad A. Dickey,2 Emanuele Buratti,3 Francisco Baralle,3 Rachel Bailey,1 Stuart Pickering-Brown,4 Dennis Dickson,1 and Leonard Petrucelli1

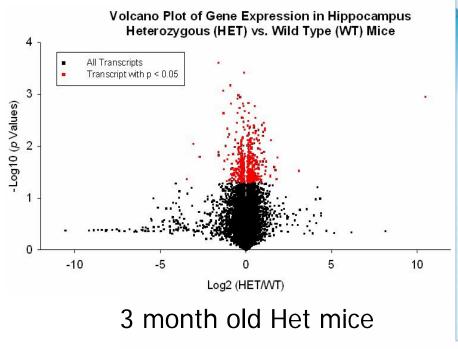
¹Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, ²Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612, ³International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy, and ⁴Division of Regenerative Medicine, University of Manchester, Manchester M13 9PT, United Kingdom

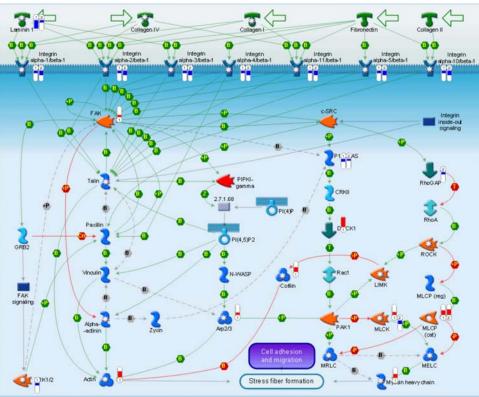


The Journal of Neuroscience, September 26, 2007 • 27(39):10530 –10534

Progranulin Mediates Caspase-Dependent Cleavage of TAR DNA Binding Protein-43

Yong-Jie Zhang,^{1*} Ya-fei Xu,^{1*} Chad A. Dickey,² Emanuele Buratti,³ Francisco Baralle,³ Rachel Bailey,¹ Stuart Pickering-Brown,⁴ Dennis Dickson,¹ and Leonard Petrucelli¹


¹Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, ²Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612, ³International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy, and ⁴Division of Regenerative Medicine, University of Manchester, Manchester M13 9PT, United Kingdom



The Journal of Neuroscience, September 26, 2007 • 27(39):10530 –10534

Microarray analysis in Progranulin null mice (Masugi Nishihara University of Tokyo)

- PGRN -/- mice display abnormalities in gender-specific brain function and behavior (Kayasuga et al., Behav. Brain Res. epub July 2007)
- No obvious progressive neuropathological changes up to 8 months of age in -/- mice
- Identifying progressive gene expression changes linked to PGRN haploinsufficiency (+/-), can then test if treatments that increase PGRN reverse this shift

Mutations in *PGRN* cause tau-negative FTDP-17

- Loss of function (mostly null) mutations in *PGRN* account for **all** tau-negative FTDP-17 families
 - PGRN lies within 2Mb of MAPT (1.7Mb)
 - Clinical phenotype similar to idiopathic FTLD but language disorders are prominent
 - Frequency is 5% in unselected ADRC FTD patient series
 - Penetrance is high (90% by 70yrs) but with wide age at onset (40s-80s)
- PGRN localized to neurons and microglia in normal brain
 - PGRN IR increased in activated microglia in neurodegenerative disease
 - Localized to microglia/dystrophic neurites around amyloid plaques
 - Localized to lysosomes in activated microglia role in phagocytosis?
 - Consistent with role modulating brain repair/inflammation (similar to chemokines, lipoxins)
- PGRN null mutations may deplete normal neurotrophic support leading to neurodegeneration and/or cause defective response to initial neuronal injury
- TDP-43 is a major component of Ubiquitin-ir inclusions found in FTLD-U
 - Progranulin haploinsufficiency leads to caspase-like cleavage of TDP-43 which may cause mislocalization and seed aggregation (Petrucelli and colleagues)
- PGRN -/- mice are viable. -/- and +/- mice show no obvious neuropathological changes to 8 months
 - Microarray analysis reveals altered gene expression patterns at 3months
 - May provide pharmacodynamic model to test compounds that increase PGRN expression

Acknowledgements

- Mayo Clinic (Hutton Group)
 - Matt Baker
 - Jennifer Gass
 - Ashley Cannon
 - Jennifer Adamson
 - Jason Eriksen
 - Chad Dickey
 - Zdenek Berger
 - Stacey Melquist
 - Rosa Řademakers

Mayo Clinic

- Dennis Dickson
- Zeshan Ahmed
- Wen-Lang Lin
- Eileen McGowan
- Amy Innes
- Keith Josephs
- Ron Petersen
- Neil Graff-Radford
- Richard Caselli
- Dave Knopman
- Ryan Uitti
- Charles Adler
- Zbigniew Wsolek
- Brad Boeve

Mayo Clinic ADRC staff

- Len Petrucelli (Mayo Clinic)
- University of Tokyo
 - Masugi Nishihara (PGRN null mice)
- University of British Columbia
 - Ian Mackenzie
 - Howard Feldman
- Collaborators from other institutions
 - Thomas G. Beach
 - Charles L. White III
 - Bruce Miller
 - Mario Mendez
 - Eileen Bigio (Northwestern U)
 - Marsel Mesulam (Northwestern U)
 - Many additional researchers who provided FTLD cases

We thank the patients and their family members for participation in this study

Funding was provided by the NIA and Mayo Clinic Foundation