ADC Directors' Meeting Chicago, April 12, 2008

Amyloid β Degradation & Inflammation: New Therapeutic Strategies in AD

Li Gan, Ph.D

Gladstone Institute of Neurological Disease University of California, San Francisco

Amyloid β Hypothesis in Alzheimer's Disease

Amyloid β Hypothesis in Alzheimer's Disease

Outline

1 Reduce abnormal accumulation of Aβ by promoting degradation

2 Block the toxic pathways in microglia activation

A^β Accumulation Results From an Imbalance Between Production and Clearance

Generation of Aβ peptides from Amyloid Precursor Protein (APP)

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA AB1-42

- More toxic
- More prone to aggregation

The Genetics of Alzheimer's Disease

Genetic factors are involved in **25 to 40**% of AD cases

Early-onset Familial AD
 APP (chromosome 21)
 PSEN1 (chromosome 14)
 PSEN2 (chromosome 1)

Amyloid β (Aβ42)

Modified from Tanzi and Bertram, Cell, 2005

The Genetics of Alzheimer's Disease

Genetic factors are involved in 25 to 40% of AD cases

Early-onset Familial AD
 APP (chromosome 21)
 PSEN1 (chromosome 14)
 PSEN2 (chromosome 1)

Late-onset Sporadic AD

APOE (chrosome 19) (ε4–allele confers risk) > 200 Genes (http://www.alzgene.org)

Modified from Tanzi and Bertram, Cell, 2005

Targeting Aβ Accumulation

Targeting Aβ Accumulation

Cathepsin B Is an Cysteine Protease Localized at Amyloid Plaques and Neuronal Endosomes

Control

hAPP mice

Genetic Ablation of Cathepsin B Increases Aβ Deposition in hAPP Mice

hAPP/CatB+/+(n=10)

hAPP/CatB-/- (n=12)

Mueller-Steiner et al., Neuron, 51:703-714. (2006)

Cathepsin B and Neprilysin Gene Transfer Reduces Aβ Deposits in the Dentate Gyrus of hAPP Mice

Mueller-Steiner et al., Neuron, 51:703-714. (2006)

Cathepsin B Degrades Synthetic Aβ1-42 Oligomers Under Cell-free Conditions

Mueller-Steiner et al., Neuron, 51:703-714. (2006)

Analysis of CatB-induced Cleavage of $A\beta$ 1-42

Monomers Oligomers

Negative Staining EM

Incubate with purified Cathepsin B

Seldi-TOF Mass Spectrometry (Ciphergen Biosystems)

Cathepsin B Truncates Aβ1-42 in a Dose-Dependent Manner

Cystatin C Is an Endogenous Inhibitor of Cathepsin B

Neurodegeneration

The Genetics of Alzheimer's Disease

- Early-onset Familial AD APP (21q21) PSEN1 (14q24) PSEN2 (1q42)
- Late-onset Sporadic AD

APOE (19q13) (ε4–allele confers risk) > 200 Genes (http://www.alzgene.org) (Meta-analysis confirmed: ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, PSEN1, TF, TFAM and TNF..)

Modified from Tanzi and Bertram, Cell, 2005

- Polymorphism associated with higher risk for lateonset AD
- Increased in the CSF of AD patients and a subset of neurons in AD-related animal models
- Inhibit Aβ fibrillization through direct binding to Aβ
 Kaeser SA et al., & Mi W et al., Nature Genetics, 2007

Reducing Cystatin C Will Lower Soluble Aβ by Enhancing CatB Activity

Reduction of Cystatin C Elevates the Activity of CatB

Genetic Inactivation of Cystatin C in hAPP Mice

2-4-month-old 5-8-month-old 8–10-month-old

hAPP/CysC+/hAPP/CysC^{-/-}

Cystatin C Reduction Lowers Soluble Aβ1-x and Aβ1-42 in Young hAPP Mice

Αβ1-Χ

Αβ**1-42**

2-4-month-old

Cystatin C Ablation Lowers the Relative Abundance of Aβ1-42 in Young hAPP Mice

Cystatin C Ablation Reduces Plaque Load in hAPP Mice

Ablation of CysC Prevents Calbindin Depletion in the DG of hAPP mice

Reduction of CysC Prevents Calbindin Depletion in the DG of hAPP mice

Genotypes S	oluble A	3 Α β 1–42/Α β	Plaque	Calbindin	Fos
CST3+/+				+++	+++
CST3+/		No human A eta		+++	+++
CST3-/-				+++	++
hAPP/CST3+/+	+++	+++	+++	+	+
hAPP/CST3+/-	++	++ *	++*	++	++
hAPP/CST3-/-	+	+	+	+++	++

Cystatin C Reduction Abolishes Premature Mortality

Are the Beneficial Effects of Cystatin C Reduction Mediated Through Enhancing CatB Activity?

Are the Beneficial Effects of Cystatin C Reduction Mediated Through Enhancing CatB Activity?

Are the Beneficial Effects of Cystatin C Reduction Mediated Through Enhancing CatB Activity?

Effects of Cystatin C Reduction in hAPP Mice Lacking CatB

2–3-month-old 4–6-month-old

CysC Reduction Failed to Lower Soluble Aβ Levels in the Absence of CatB

Reducing CysC Failed to Lower Relative Abundance of Aβ1-42 and Plaque Load in the Absence of CatB

CysC Reduction Did Not Increase Calbindin Levels in the Absence of CatB

Genotypes	Soluble $A\beta$	Α β 1–42/Α β	Plaque	Calbindin	c-Fos
CST3+/+				+++	+++
CST3+/		No human A	+++	+++	
CST3–/–				+++	++
hAPP/CST3+/+	+++	+++	+++	+	+
hAPP/CST3+/-	++	++	++	++	++
hAPP/CST3–/–	+	+	+	+++	++
				+++	
CS/S+/+/CalD-/-					
CST3+/-/CatB-/-		No human J	+++	+++	
CST3-/-/CatB-/-				+++	+++
hAPP/CST3+/+/ <mark>Cat</mark>	3-/- +++	+++	+++] +	+
hAPP/CST3+/-/Cat	3_/_ +++	+++	+++	+	+
hAPP/CST3-/-/CatE	3-/- +++	+++	+++	+	+

Cystatin C Regulates Soluble Aβ and Neuronal Deficits in a CatB-dependent Manner

New Strategies to Reduce Aβ Accumulation

Our Research Focuses

 Reduce abnormal accumulation of Aβ by promoting degradation

2 Block the toxic pathways in microglia activation

Aβ Downregulates SIRT1 and Activates NF-κB Signaling in Microglia

Neurodegeneration

- Class III histone deacetylase
- Deactylate histones and non-histone transcription factors
- A conserved pathway for lifespan extension from protozoa to metazoa
- Modulate multiple processes in neurodegeneration

Gan and Mucke, Neuron, 58:10–14. (2008)

Inhibition of NF-kB Signaling Through Deacetylation by SIRT1

Yeung et al., 2004

Aβ Oligomers Downregulate SIRT1 and Activate NF-κB Activation in Microglial Cells

SIRT1 Levels Are Downregulated in hAPP Mouse Brains

Activation of NF-κB Signaling in Hippocampus of hAPP Mice

Esposito et al. (Mucke), J. Neuroscience

Cortical Neuron-Glia Mixed Cultures

Targeted Inhibition of NF-κB Signaling in Microglia Protects Against Aβ Toxicity

Lenti-MCSF-I κ B α -SR

Chen et al., J. Biol. Chem., 280. (2005)

Expression of SIRT1 in Microglia Protects Against Aβ Toxicity

Lenti-MCSF-SIRT1

SIRT1 Agonist Resveratrol Inhibits NF-kB and Protects Against Toxic Effects of Microglia Activation

Red: MAP2 (neurons) Green: NF-кB activation

Chen et al., J. Biol. Chem., 280. (2005)

ΝΤ

Resveratrol Exerts Beneficial Effects as a SIRT1 Agonist in Vivo

ОH

Grapes

Red Wine

Reduces insulin resistance, Increases mitochondrial function, Prolongs survival in mice fed a high-fat diet

Baur et al., Nature, (2006); Lagouge et al., Cell, (2006)

New Strategies to Block the Toxic Effects of Microglia Activation

Acknowledgments

Gan Lab Binggui Sun Yungui Zhou Seo-Hyun Cho Brian Halabisky Sang-Won Min

Sarah Mueller-Steiner Jennifer Chen Hideaki Arai

Funding

National Institute of Aging **NIA/UCSF ADRC Pilot Grant** Alzheimer's Disease Program of California Erik Roberson Whittier Foundation Hellman Family Fund

Collaborators

Anders Grubb Xin Wang Lennart Mucke Hidde Plough **Christoph Peters** Eliezer Masliah

Ongoing Investigation

 Does CysC reduction prevent behavioral deficits in hAPP mice?

- Elevated plus maze
- Open-field Activity
- Morris water maze
- Contextual fear conditioning

Ongoing Investigation

1) Does CysC reduction prevent behavioral deficits in hAPP mice?

- Elevated plus maze
- Habituation in the open-field
- Morris water maze
- Contextual fear conditioning

Ongoing Investigation & Future Plans

- 2) Where does CysC and CatB interact?
 - Extracellular or intracellular
 - Neuron or glia (microglia)
 - Autophagic degradation?
- 3) How is the CysC-CatB axis regulated?

4) How to disrupt the CysC-CatB interaction ?

Ongoing Investigation & Future Plans

2) Where does CysC and CatB interact?

3) How is the CysC-CatB axis regulated?

- Misfolded protein
- Aging/environmental factors (stress & inflammation)
- Genetic mutations/polymorphism

4) How to disrupt the CysC-CatB interaction to promote Aβ clearance?

Intracellular Accumulation of CysC Is Associated With CST3 Polymorphism & PS2 Mutations

Ghidoni et al., Neurobiology of Aging, 2007 Benussi et al., Neurobiology of Disease, 2003

Ongoing Investigation & Future Plans

2) Where does CysC and CatB interact?

3) How is the CysC-CatB axis regulated?

4) How to disrupt the CysC-CatB interaction?

- Structural basis
- Robust cell-based or cell-free assay
- Monoclonal antibodies (extracellular)
- Small molecule compounds (Intracellular)

Functional Deficits Induced by Naturally Secreted Aβ Oligomers From CHO Cells Expressing hAPP (7PA2)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] anc TIFF (Uncompressed) decompressor are needed to see this pi **Dimer** QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

conditioned medium from 7PA2 Cells

Walsh et al., Nature, 2002

A Cell-based Assay to Screen for Inhibitors of CatB-CysC Interaction

Conditioned Medium

7PA2-Mock7PA2-CysC7PA2-CysC-∆

A Cell-based Assay to Screen for Inhibitors of CatB-CysC Interaction

Multiple readouts:

 CatB activities (enzymatic assay)
Total Aβ levels (ELISA)
Levels of Aβ oligomers (IP-WB)
Toxicity of the conditioned medium (cell death assay/electrophysiology)

Reducing CysC Lowers Relative Abundance of Aβ1-42 in the Presence of CatB

Relative Abundance of Aβ1-42 Remains Similarly High in the Absence of CatB

Structural Basis for the CatB-CysC Interaction

Regions on CysC that confer selectivity to CatB:

- Arg-8 and Leu-9
- Trp106 at the second loop

Regions on CatB that interact with CysC:

- -1–16
- -53–61
- -104–108

Janowski et al. 2005; Jia et al, 1995; Clare Peters-Libeu

Structural Basis for the CatB-CysC Interaction

- Regions on CysC that confer selectivity to CatB:
 - Arg-8 and Leu-9
 - Trp106 at the second loop

Regions on CatB that interact with CysC: -1-16 -53-61 -104-108

Janowski et al. 2005; Jia et al, 1995; Clare Peters-Libeu

Cathepsin B Reduces Naturally Secreted Aβ Oligomers in CHO Cells Expressing hAPP

M. Cisse, Y. Zhou

Cystatin C May Interact with Cathepsin B Extracellularly

Cathepsin B activity in CSF

Binggui Sun

CysC-CatB Axis in Aβ Degradation

Co-localization of cystatin C with cathepsin B in neurons of AD brains

Deng, et al, Am J Pathol 2001, 59:1061-8

Microglial BV2 Cells

Constitutive Autophagy Plays an Central Role in Degradation of Misfolded Proteins

Levine & Kroemer, Cell, 2008

Macroautophagy Involves Fusion of Lysosomes With Autophagosomes

Levine & Kroemer, Cell, 2008
Aβ Activates Autophagy in Microglia: Accompanied by CatB Induction and CysC Reduction

APP Processing and Aβ Generation

Cystatin C Ablation Does Not Affect hAPP Processing in Vivo

Overexpression of Cystatin C Resulted in Slight Inhibition of CatB

Yungui Zhou and Stephan Kaeser

DeMattos et al., 2002

Mucke et al., 2000

In the CSF [Ab] ~ 20 ng/ml (4.4 nM) [CysC] ~ 0.1uM =100 nM >> CatB

In the hippocampus: [Ab] ~ 50 nM [CysC] ~ 0.1uM =100 nM >> CatB