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1 Reduce abnormal 1
accumulation of Ap by ~
promoting degradation *v

2 Block the toxic pathways ﬁ
In microglia activation ‘




A3 Accumulation Results From an Imbalance
Between Production and Clearance




Generation of Ap peptides from
Amyloid Precursor Protein (APP)

FAD mutations
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B-secretase ‘ y-secretase (Presenilin complex)
(BACE1)
Ap AB42
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= More toxic
= More prone to aggregation



The Genetics of Alzheimer's Disease

Genetic factors are involved in 25 to 40% of AD cases

= Early-onset Familial AD
APP (chromosome 21)
PSEN1 (chromosome 14) ¢~ Amyloid B (Ap42)
PSENZ (chromosome 1) _J

Modified from Tanzi and Bertram, Cell, 2005



The Genetics of Alzheimer's Disease

Genetic factors are involved in 25 to 40% of AD cases

= Early-onset Familial AD
APP (chromosome 21)
PSENT (chromosome 14) = ~ 9% AD cases
PSENZ (chromosome 1)

-~

= | ate-onset Sporadic AD
APOE (chrosome 19) (e4—allele confers risk)
> 200 Genes (http://www.alzgene.org)

Modified from Tanzi and Bertram, Cell, 2005
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Targeting A Accumulation
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Production Clearance

TN > /
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“secretase :
il Insulin degrading enzyme (IDE)

l Neprilysin (NEP)

Angiotensin converting enzyme (ACE)
Endothelin converting enzyme
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l MMP-9
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Cathepsin B Is an Cysteine Protease Localized at
Amyloid Plaques and Neuronal Endosomes
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Genetic Ablation of Cathepsin B Increases
A3 Deposition in hAPP Mice

hAPP/CatB++(n=10) hAPP/CatB~- (n=12)

Mueller-Steiner et al.,
Neuron, 51:703-714. (2006)



Cathepsin B and Neprilysin Gene Transfer Reduces
AB Deposits in the Dentate Gyrus of hAPP Mice

Relative 3D6-positive Area
(Injected/Uninjected)

Mueller-Steiner et al.,
Lenti-CatB Lenti-NEP Lenti-Con  Neyron, 51:703-714. (2006)
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Cathepsin B Degrades Synthetic Ap1-42
Oligomers Under Cell-free Conditions

High MW
oligomers

tetramers
trimers

dimers
monomers

CatB (ug/ml) O 1 p. 2
inhibitor = - —

Mueller-Steiner et al.,
Neuron, 51:703-714. (2006)



Analysis of CatB-induced Cleavage of Ap31-42

Monomers Oligomers
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Negative Staining
EM

Incubate with purified
Cathepsin B
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Seldi-TOF Mass Spectrometry
(Ciphergen Biosystems)



Cathepsin B Truncates AB31-42 in a Dose-
Dependent Manner

Seldi-TOF Mass
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Cystatin C Is an Endogenous Inhibitor of
Cathepsin B
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The Genetics of Alzheimer's Disease

= Early-onset Familial AD
APP (21g21)
PSEN1 (14924)
PSENZ2 (1942)

» L ate-onset Sporadic AD
APOE (19913) (e4—allele confers risk)
> 200 Genes (http://www.alzgene.org)

(Meta-analysis confirmed: ACE, CHRNB2, CSTS3,
ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP,
PSEN1, TF, TFAM and TNF..)

Modified from Tanzi and Bertram, Cell, 2005



Cystatin C in AD

= Polymorphism associated with higher risk for late-
onset AD

= Increased in the CSF of AD patients and a subset of
neurons in AD-related animal models

= Inhibit A fibrillization through direct binding to Ap

Kaeser SAetal., & Mi W et al.,
Nature Genetics, 2007



Reducing Cystatin C Will Lower Soluble A
by Enhancing CatB Activity




Reduction of Cystatin C Elevates
the Activity of CatB
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Genetic Inactivation of Cystatin C
in hAPP Mice
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CysC+* CysC+- CysC-
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Cystatin C Reduction Lowers Soluble
Ap1-x and AB1-42 in Young hAPP Mice
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Cystatin C Ablation Lowers the Relative
Abundance of AB1-42 in Young hAPP Mice
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Cystatin C Ablation Reduces Plaque
Load in hAPP Mice

L
..

hAPP/CysC ¥/t hAPP/CysC -

m

5=8-month B=10-month
1 3.5

| 3.0
2.5

1 2.0
| 1.5

(1.0
| 0.5
0.0

g
g
©
2
e}]
S
o
8
o




Ablation of CysC Prevents Calbindin
Depletion in the DG of hAPP mice

hAPP/CysC"/* R "hAPP/CysC‘/'
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Reduction of CysC Prevents Calbindin
Depletion in the DG of hAPP mice
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Genotypes Soluble A  AB1-42/Ap3 Plaque Calbindin Fos

CST3+/+ ++ +++
CST3+/- No human Ap S +++
CST3-/- +++ ++
hAPP/CST3+/+ +++ +++ +++ + +
hAPP/CST3+/— ++ ¥ +4* 4+ ++
hAPP/CST3—/— + + + Gk ++




Cystatin C Reduction Abolishes
Premature Mortality

CysC+/+
—— APP/CysC+/+

CysC-/-

APP/CysC—/-
- - - CysC+/-
— APP/CysC+/-
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Are the Beneficial Effects of Cystatin C Reduction
Mediated Through Enhancing CatB Activity?

Cystatin C{
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Are the Beneficial Effects of Cystatin C Reduction
Mediated Through Enhancing CatB Activity?

Cystatin C{
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Are the Beneficial Effects of Cystatin C Reduction
Mediated Through Enhancing CatB Activity?
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Effects of Cystatin C Reduction
in hAPP Mice Lacking CatB
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CysC Reduction Failed to Lower Soluble
Ap Levels in the Absence of CatB
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Reducing CysC Failed to Lower Relative Abundance of
AB1-42 and Plaque Load in the Absence of CatB
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CysC Reduction Did Not Increase
Calbindin Levels in the Absence of CatB
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Genotypes Soluble A Ap1-42/AB Plaque Calbindin c-Fos

CST3+/+ ++4 4+
CST3+/- No human Af i +++
CST3-/- +++ ++
hAPP/CST3+/+ +++ +++ +++ + +
hAPP/CST3+/— ++ ++ ++ ++ ++
hAPP/CST3—/- + + + +++ ++
CST3+/+/CatB—/— +++ +++
CST3+/-/CatB—/— No human Aj +++ +++
CST3-/-/CatB—/— +++ +++
hAPP/CST3+/+/CatB—/— +++ +++ +++ + +
hAPP/CST3+/-/CatB—/— +++ 4+ 4+ + +

hAPP/CST3-/-/CatB—/— +++ +++ +++ + +




Cystatin C Regulates Soluble Ap and Neuronal
Deficits in a CatB-dependent Manner

Cystatin C{
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New Strategies to Reduce A} Accumulation

Cathepsin T
B

@—I

Cystatin
c |
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v Gene transfer of CatB enzyme

v Reducing CysC levels Neurodegeneration

v" Disrupting the CatB-CysC
interaction




Our Research Focuses

®» Reduce abnormal 1
accumulation of A by RN
promoting degradation %v

2 Block the toxic pathways ﬂ
In microglia activation ‘




Ap Downregulates SIRT1 and Activates
NF-xB Signaling in Microglia

‘
W

Neurodegeneration




SIRT1

= Class lll histone deacetylase

= Deactylate histones and non-histone transcription
factors

= A conserved pathway for lifespan extension from
protozoa to metazoa

* Modulate multiple processes in neurodegeneration

Gan and Mucke, Neuron,
58:10-14. (2008)



Inhibition of NF-xB Signaling Through
Deacetylation by SIRTT

Mucleus Cytoplasm P50 RelA —=— Stimulus

B Activation of |@
Enhancer \/ HDAC(SIRT1) '

fxBex
\ (Ac) Nuclear Degradation

: 300/CBP Import
p50 RelA P p5S0 RelA ,..........u..wﬂ._.. p50 RelA

HDAC: Histone Deacetylase

Yeung et al., 2004



Ap Oligomers Downregulate SIRT1 and
Activate NF-xB Activation in Microglial Cells
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SIRT1 Levels Are Downregulated
in hAPP Mouse Brains

Ntg hAPP
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Activation of NF-xB Signaling in
Hippocampus of hAPP Mice
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Esposito et al. (Mucke), J. Neuroscience



Cortical Neuron-Glia Mixed Cultures
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Targeted Inhibition of NF-xB Signaling in
Microglia Protects Against A3 Toxicity

Lenti-MCSF-EGFP

Lenti-MCSF-IkBu-SR
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Expression of SIRT1 in Microglia Protects
Against A3 Toxicity

Surviving A3 Treatment
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SIRT1 Agonist Resveratrol Inhibits NF-xB and Protects
Against Toxic Effects of Microglia Activation

NT -

Green: NF-xB activation

Chen et al., J. Biol. Chem., Ap+Res

280. (2005)



Resveratrol Exerts Beneficial Effects as
a SIRT1 Agonist In Vivo

Red Wine

insulin resistance,
mitochondrial function,
survival
in mice fed a high-fat diet

Baur et al., Nature, (2006); Lagouge et al., Cell, (2006)



New Strategies to Block the Toxic Effects of
Microglia Activation

\ /52 Aesveratro

v" Inhibiting NF-xB in microglia
Neurodegeneration v Increasing SIRT1 in microglia

v Addition of SIRT1 agonists
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Ongoing Investigation

1) Does CysC reduction prevent behavioral deficits in hAPP
mice?

Elevated Plus Maze

= Open-field Activity

= Morris water maze
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Ongoing Investigation
1) Does CysC reduction prevent behavioral deficits in hAPP
mice?

Habituation in the Open Field

» Elevated plus maze

= Morris water maze
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Ongoing Investigation & Future
Plans

2) Where does CysC and CatB interact?

- Extracellular or intracellular
- Neuron or glia (microglia)
- Autophagic degradation?

3) How is the CysC-CatB axis regulated?

4) How to disrupt the CysC-CatB interaction ?



Ongoing Investigation & Future
Plans

2) Where does CysC and CatB interact?

3) How is the CysC-CatB axis regulated?
- Misfolded protein
- Aging/environmental factors (stress & inflammation)
- Genetic mutations/polymorphism

4) How to disrupt the CysC-CatB interaction to promote A
clearance?



Intracellular Accumulation of CysC Is
Associated With CST3 Polymorphism
& PS2 Mutations

Mock PS2wt
PS2M239I PS2T122R
Ghidoni et al.,

Neurobiology of Aging, 2007

CSTIBEB CST3IAA

— 30 kDa

—21.5

— 144

Benussi et al.,
Neurobiology of Disease, 2003



Ongoing Investigation & Future
Plans

2) Where does CysC and CatB interact?

3) How is the CysC-CatB axis regulated?

4) How to disrupt the CysC-CatB interaction?

- Structural basis

- Robust cell-based or cell-free assay

- Monoclonal antibodies (extracellular)

- Small molecule compounds (Intracellular)



Functional Deficits Induced by Naturally Secreted Ap
Oligomers From CHO Cells Expressing hAPP (7PA2)

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ anc .
TIFF (Uncompressed) decomDi&hr
are needed to see this pi Dimer

conditioned medium from 7PA2 Cells Walsh et al., Nature, 2002



A Cell-based Assay to Screen for Inhibitors
of CatB-CysC Interaction

Conditioned Medium

7PA2-Mock
Gly-CysC

7PA2-CysC-A CysC

1.0+

o

Relative CatB Activity
o
T




A Cell-based Assay to Screen for Inhibitors
of CatB-CysC Interaction

Multiple readouts:

(enzymatic assay)
(ELISA)
(IP-WB)

(cell death assay/electrophysiology)



Reducing CysC Lowers Relative
Abundance of AB1-42 in the Presence of CatB
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Relative Abundance of Ap1-42
Remains Similarly High in the Absence of CatB
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Structural Basis for the CatB-CysC
Interaction

Regions on CysC that confer
selectivity to CatB:
- Arg-8 and Leu-9
- Trp106 at the second loop

Regions on CatB that
interact with CysC:
-1-16
-53-61
-104-108

Janowski et al. 2005; Jia et al, 1995; Clare Peters-Libeu



Structural Basis for the CatB-CysC
Interaction

Regions on CysC that
confer selectivity to
CatB:

- Arg-8 and Leu-9
- Trp106 at the second 104-108
loop

Regions on CatB that
interact with CysC:
-1-16
-53—-61
-104-108

Janowski et al. 2005; Jia et al, 1995; Clare Peters-Libeu



Cathepsin B Reduces Naturally Secreted A3
Oligomers in CHO Cells Expressing hAPP

7PA2

CHO Ct CatB Ct CatB

__ Dimers Trimers

* x

8 8 8 8

CHO 7PA2 7PA2-CatB CHO 7PA? 7PA?2-CatB

M. Cisse, Y. Zhou



Cystatin C May Interact with Cathepsin B
Extracellularly

Cathepsin B activity in CSF

Binggui Sun



CysC-CatB Axis in A} Degradation

N
4% 'h Co-localization of cystatin C with
dg in neurons of AD brains
T Deng, et al, Am J Pathol 2001, 59:1061-8
¥ T
CysC AB Merge
S Microglial
i‘ BV2 Cells
CaiB Ap Merge




Constitutive Autophagy Plays an Central Role in
Degradation of Misfolded Proteins

Basal conditions Stress conditions
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Macroautophagy Involves Fusion of Lysosomes With
Autophagosomes
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ApB Activates Autophagy in Microglia: Accompanied by
CatB Induction and CysC Reduction

Activation of Autophagy

_ + A
Ctrl LPS Rapamycin Ctrl Ctrl  oligomers
“—LC3-I “—LC3-I
< LC3-ll LC3-II

“—CatB

Microglial BV2
Cells




APP Processing and A3 Generation
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Cystatin C Ablation Does Not Affect
hAPP Processing in Vivo
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Overexpression of Cystatin C Resulted
in Slight Inhibition of CatB

(AU/ug protein)
© = N WO H O O N 00 ©

Hippocampal CatB Activity

Tg-hCysC

Yungui Zhou and Stephan Kaeser
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In the CSF
[Ab] ~ 20 ng/ml (4.4 nM)
[CysC] ~ 0.1uM =100 nM >> CatB

In the hippocampus:
[Ab] ~ 50 nM
[CysC] ~ 0.1uM =100 nM >> CatB




