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FAD mutations

Aβ

β-secretase
(BACE1)

γ-secretase (Presenilin complex)

Aβ42
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Aβ38

Generation of Aβ
 

peptides from 
Amyloid Precursor Protein (APP)

hAPP

Aβ1-42DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA

More toxic
More prone to aggregation
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The Genetics of Alzheimer's Disease

Early-onset Familial AD
APP

 
(chromosome 21) 

PSEN1

 
(chromosome

 
14)

PSEN2

 
(chromosome

 
1)

Late-onset Sporadic AD
APOE (chrosome 19)

 
(ε4−allele confers risk)

> 200 Genes (http://www.alzgene.org)
    
    

Modified from Tanzi and Bertram, Cell, 2005

~ 5% AD cases

Genetic factors are involved in

 
25 to 40% of AD cases
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Neurodegeneration
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Clearance
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Production

secretase 
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Angiotensin converting enzyme (ACE)
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Cathepsin B Is an Cysteine Protease Localized at 
Amyloid Plaques and Neuronal Endosomes

Control

ADControl

hAPP mice



Genetic Ablation of Cathepsin B Increases 
Aβ

 
Deposition in hAPP Mice

hAPP/CatB+/+(n=10) hAPP/CatB–/–

Anti-Aβ Anti-Aβ

(n=12)

Mueller-Steiner et al., 
Neuron, 51:703-714. (2006)



3D6 3D6

Non-injected

3D6 3D6

Injected (Lenti-CatB) Non-injected

Cathepsin B and Neprilysin Gene Transfer Reduces 
Aβ

 
Deposits in the Dentate Gyrus of hAPP Mice

Anti-Aβ Anti-Aβ

Injected-side Contralateral

Mueller-Steiner et al., 
Neuron, 51:703-714. (2006)



Cathepsin B Degrades Synthetic Aβ1-42 
Oligomers Under Cell-free Conditions 

Aβ1-42

Mueller-Steiner et al., 
Neuron, 51:703-714. (2006)



Incubate with purified
Cathepsin B

Seldi-TOF Mass Spectrometry
(Ciphergen Biosystems)

Analysis of CatB-induced Cleavage of Aβ1-42

Monomers Oligomers

Negative Staining
EM



Cathepsin B Truncates Aβ1-42 in a Dose-
 Dependent Manner

Seldi-TOF Mass 
Spectrometry
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Cystatin C Is an Endogenous Inhibitor of 
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The Genetics of Alzheimer's Disease

Early-onset Familial AD
APP

 
(21q21)

PSEN1

 
(14q24)

PSEN2

 
(1q42)

Late-onset Sporadic AD
APOE (19q13)

 
(ε4−allele confers risk)

> 200 Genes (http://www.alzgene.org)
(Meta-analysis confirmed: ACE, CHRNB2, CST3, 
ESR1, GAPDHS, IDE, MTHFR, NCSTN, PRNP, 
PSEN1, TF, TFAM and TNF..) 

    
    

Modified from Tanzi and Bertram, Cell, 2005



Cystatin C in AD

Polymorphism associated with higher risk for late-
onset AD

Increased in the CSF of AD patients and a subset of 
neurons in AD-related animal models

Inhibit Aβ fibrillization through direct binding to Aβ
Kaeser SA et al.,

 

& Mi W et al.,
Nature Genetics, 2007



Reducing Cystatin C Will Lower Soluble Aβ
by Enhancing CatB Activity

CatB
CysC



Reduction of Cystatin C Elevates 
the Activity of CatB



Genetic Inactivation of Cystatin C 
in hAPP Mice
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Aβ1-42

Cystatin C Reduction Lowers Soluble 
Aβ1-x and Aβ1-42 in Young hAPP Mice

2–4-month-old

Aβ1-X
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Cystatin C Ablation Lowers the Relative 
Abundance of Aβ1-42 in Young hAPP Mice

2–4-month-old

15219

β



Cystatin C Ablation Reduces Plaque 
Load in hAPP Mice

10 915 15



Ablation of CysC Prevents Calbindin 
Depletion in the DG of hAPP mice

calbindin
CysC+/+

hAPP/CysC+/+

CysC–/–

hAPP/CysC–/–



Reduction of CysC Prevents Calbindin 
Depletion in the DG of hAPP mice
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Cystatin C Reduction Abolishes 
Premature Mortality



Cystatin C

Cathepsin B

Soluble Aβ
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Neuronal Deficits

Are the Beneficial Effects of Cystatin C Reduction 
Mediated Through Enhancing CatB Activity?

Plaque load
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Neuronal Deficits

Are the Beneficial Effects of Cystatin C Reduction 
Mediated Through Enhancing CatB Activity?

Fibril Aβ

Binds to Aβ

??

Other cysteine
proteinases
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Neuronal Deficits

Are the Beneficial Effects of Cystatin C Reduction 
Mediated Through Enhancing CatB Activity?
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Effects of Cystatin C Reduction
 in hAPP Mice

 
Lacking CatB

X

hAPP+/CatB–/– CysC–/–/CatB–/–
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CysC Reduction Failed to Lower Soluble
Aβ Levels in the Absence of CatB
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Reducing CysC Failed to Lower Relative Abundance of
Aβ1-42  and Plaque Load

 
in the Absence of CatB

hAPP/CysC+/+

hAPP/CysC+/–

hAPP/CysC–/–

2–3-month-old 4–6-month-old
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CysC Reduction Did Not Increase
Calbindin Levels in the Absence of CatB
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Cystatin C

Cathepsin B

Soluble Aβ
 

(42)

Neuronal Deficits

Cystatin C Regulates Soluble Aβ
 

and Neuronal 
Deficits in

 
a CatB-dependent Manner
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Gene transfer of CatB enzyme

Reducing CysC levels

Disrupting the CatB-CysC    
interaction



Our Research Focuses
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Degradation

Neurodegeneration

Aβ
 

Downregulates SIRT1 and Activates
 NF-κB Signaling in Microglia

NF-κBSIRT1

+



Class III histone deacetylase

Deactylate histones and non-histone transcription 
factors

A conserved pathway for lifespan extension from 
protozoa to metazoa

Modulate multiple processes in neurodegeneration

SIRT1

Gan and Mucke, Neuron, 
58:10–14. (2008)



Activation

Adapted from Chen and Greene, J Mol Med., 2003 

Activation of 
HDAC(SIRT1)

Inhibition of NF-κB Signaling Through 
Deacetylation by SIRT1

HDAC: Histone Deacetylase

Yeung et al., 2004



Aβ
 

Oligomers Downregulate SIRT1 and
Activate NF-κB Activation in Microglial Cells
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SIRT1 Levels Are Downregulated 
in hAPP Mouse Brains



Esposito et al. (Mucke), J. Neuroscience

Activation of NF-κB Signaling in 
Hippocampus of hAPP Mice

NF-κB DNA/
NE complex

Electrophoretic Mobility
Shift Assay (EMSA)



Cortical Neuron-Glia Mixed Cultures

MAP2
(neurons)

GFAP 
(astrocytes)

GFAP
(astrocytes)CD11b 

(microglia)



Targeted Inhibition of NF-κB Signaling in 
Microglia Protects Against Aβ

 
Toxicity

Aβ1-42 Aβ1-42

IκBα-SRMCSF Chen et al., J. Biol. Chem., 
280. (2005)

Lenti-MCSF-IκBα-SR



Expression of SIRT1 in Microglia Protects 
Against Aβ

 
Toxicity

Adapted from Chen and Greene, J Mol Med., 2003 

SIRT1MCSFLenti-MCSF-SIRT1



SIRT1 Agonist Resveratrol Inhibits NF-κB and Protects 
Against Toxic Effects of Microglia Activation

No treatment

Red:
 

MAP2 (neurons)
Green:

 
NF-κB activation

Aβ

Aβ+Res

NT

Chen et al., J. Biol. Chem., 
280. (2005)



Resveratrol Exerts Beneficial Effects as
a SIRT1 Agonist in Vivo 

Grapes Red Wine

Baur et al., Nature, (2006); Lagouge et al., Cell, (2006)

Reduces

 

insulin resistance,
Increases

 

mitochondrial function,
Prolongs survival
in mice fed a high-fat diet
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to Block the
 

Toxic Effects of 
Microglia Activation

NF-κB SIRT1

Resveratrol

Inhibiting NF-κB in microglia

Increasing SIRT1 in microglia

Addition of SIRT1 agonists
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1) Does CysC reduction prevent behavioral deficits in hAPP 
mice?

Elevated plus maze

Open-field Activity

Morris water maze

Contextual fear conditioning

Ongoing Investigation
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Elevated plus maze
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Morris water maze
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1) Does CysC reduction prevent behavioral deficits in hAPP 
mice?

Ongoing Investigation

P = 0.07



Ongoing Investigation & Future 
Plans

2)
 

Where
 

does CysC and
 

CatB interact?
-

 
Extracellular or intracellular

-

 
Neuron or glia (microglia)

-

 
Autophagic degradation?

3)
 

How is the CysC-CatB axis regulated?

4) How to disrupt the CysC-CatB
 

interaction ?



Ongoing Investigation & Future 
Plans

2) Where does CysC and CatB interact?

3) How is the CysC-CatB axis regulated?
-

 
Misfolded protein

-

 
Aging/environmental factors (stress & inflammation)

-

 
Genetic mutations/polymorphism

4) How to disrupt the CysC-CatB

 
interaction to promote Aβ

 clearance?



PS2T122R

Mock

PS2M239I

PS2wt

Intracellular Accumulation of CysC Is 
Associated

 
With CST3 Polymorphism 

& PS2 Mutations

Benussi et al.,
Neurobiology of Disease, 2003 

Ghidoni et al.,
Neurobiology of Aging, 2007 



Ongoing Investigation & Future 
Plans

2) Where does CysC and CatB interact?

3) How is the CysC-CatB axis regulated?

4) How to disrupt the CysC-CatB
 

interaction?

-

 
Structural basis

-

 
Robust cell-based or cell-free assay

-

 
Monoclonal antibodies (extracellular)

-

 
Small molecule compounds (Intracellular)



QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Functional Deficits Induced by Naturally Secreted Aβ
 Oligomers From CHO Cells Expressing hAPP (7PA2)

Walsh et al.,

 

Nature, 2002

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

conditioned medium from 7PA2 Cells

Dimer
Trimer



Conditioned Medium 
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Gly-CysC
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A Cell-based Assay to Screen for Inhibitors 
of CatB-CysC Interaction



CatB activities (enzymatic assay)
Total Aβ levels (ELISA)
Levels of Aβ oligomers (IP-WB)
Toxicity of the conditioned medium
(cell death assay/electrophysiology)

A Cell-based Assay to Screen for Inhibitors 
of CatB-CysC Interaction

Multiple readouts:



Reducing CysC Lowers Relative
Abundance of Aβ1-42 in the Presence of CatB

hAPP/CysC+/+

hAPP/CysC+/–

hAPP/CysC–/–



Relative Abundance of Aβ1-42
Remains Similarly High

 
in the Absence of CatB

hAPP/CysC+/+

hAPP/CysC+/–

hAPP/CysC–/–



Janowski et al. 2005; Jia et al, 1995; Clare Peters-Libeu

Structural  Basis for
 

the CatB-CysC 
Interaction

Regions on CysC that confer 
selectivity to CatB:
-

 
Arg-8 and Leu-9

-

 
Trp106 at the second loop

Regions on CatB that 
interact with CysC:
-1–16
-53–61
-104–108



Janowski et al. 2005; Jia et al, 1995; Clare Peters-Libeu

Structural  Basis for
 

the CatB-CysC 
Interaction

Regions on CysC that 
confer selectivity to 
CatB:
-

 
Arg-8 and Leu-9

-

 
Trp106 at the second 

loop

Regions on CatB that 
interact with CysC:
-1–16
-53–61
-104–108
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Cathepsin B Reduces Naturally Secreted Aβ
 Oligomers in
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Cathepsin B activity in CSF

Cystatin C May Interact with Cathepsin B 
Extracellularly
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Co-localization of cystatin C

 

with
cathepsin B

 

in neurons of AD brains

Deng, et al, Am J Pathol 2001, 59:1061-8

CysC-CatB Axis in Aβ Degradation

CysC

CatB

Aβ

Aβ

Merge

Merge

Microglial
BV2 Cells



Levine & Kroemer, 
Cell, 2008

Constitutive Autophagy Plays an Central Role in
Degradation of Misfolded Proteins



Macroautophagy Involves Fusion of Lysosomes With
Autophagosomes

LC3-II

LC3-II

Levine & Kroemer, 
Cell, 2008



Activation of Autophagy

LC3-I            LC3-II

Ctrl LPS Rapamycin

LC3-I
LC3-II

Microglial BV2 
Cells

Ctrl Ctrl
+ Aβ

 
oligomers

LC3-I
LC3-II

Aβ
 

Activates Autophagy in Microglia: Accompanied by 
CatB Induction and

 
CysC Reduction

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

CatB
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APP Processing and Aβ
 

Generation 

Aβ

β-secretase γ-secretase
FL-hAPP

β-CTF

α-CTF

α-sAPP

α-secretase

A

 β

Aβ1-40
Aβ1-38
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Cystatin
 

C Ablation Does Not Affect 
hAPP Processing in Vivo



Ntg Tg-hCysC
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Overexpression of Cystatin C
 

Resulted 
in Slight Inhibition of CatB

Yungui Zhou and Stephan Kaeser 



In the CSF
[Ab] ~

 

20 ng/ml (4.4 nM)
[CysC] ~ 0.1uM =100 nM

 

>> CatB

In the hippocampus:
[Ab] ~

 

50 nM 
[CysC]

 

~ 0.1uM =100 nM >> CatB 

Mucke

 

et al., 2000DeMattos

 

et al., 2002


