CSF biomarkers in aging and the transition to Alzheimer's Disease

Douglas Galasko

Dept of Neurosciences, UCSD Neurology Service, VAMC Director, Shiley-Marcos Alzheimer's Disease Research Center, UCSD

Biomarkers, key AD lesions and symptoms

CSF biomarkers and AD

- Low CSF Aβ42, and high levels of tau and P-tau181 are a core biomarker signature related to AD pathology
- Many studies have defined cutoffs to diagnose AD vs controls, or for differential diagnosis
- CSF biomarkers can clarify:
 - timing of the onset of pathology
 - the relationship to brain structural changes and to symptoms
 - pathological mechanisms that may contribute to AD

What does the 'concentration' of a biomarker in CSF mean?

- CSF biomarkers turn over, and reflect *recent* brain events
- Markers reach ISF space through
 - secretion e.g. $A\beta$
 - leakage or damage e.g. tau
- They then undergo clearance:
 - Uptake by cells in the brain
 - Degradation by enzymes
 - Binding to plaques e.g. Aβ42
 - Passage into blood
- Levels of biomarkers in CSF represent an equilibrium between these processes

Low CSF A β 42 in AD is related to amyloid deposition

Lower CSF Aβ42 is associated with higher firbillar amyloid amyloid burden (PIB)

- Fagan et al, 2006; 2008, Rabinovici et al, 2009

About 14% of normal subjects are PIB neg, but have low CSF A β 42 ? variability of CSF, *or* pre-fibrillar A β e.g. diffuse deposits - Fagan et al, 2010

CSF total tau and P-tau

- 2-3 fold 1 in AD vs controls; sensitivity 75-85%
- Levels not related to APO-E genotype or dementia severity
- Remains stably 1 in AD
- Acute damage e.g. stroke, or neuronal death e.g. CJD, leads to marked [↑] total tau, not P-tau

A CSF study across the adult lifespan

• Funded as NACC Collaborative project: UCSD,

J, U Penn

fill age strata MMSE > 27/30, normal on NYU

ammatory illnesses ecting CNS ness, major organ failure, icose and platelet count

Demographics and biomarker levels

	Controls < 60	Controls, ≥ 60	AD
Number	155	145	104
Age	41 ± 3.0	72 ± 7.2	72 ± 9.2
Sex (% F)	54	54	46
Education	16 ± 2.7	16 ± 2.7	16 ± 3.2
APO-E e4+ (%)	38	28	69
Body Mass Index	24 ± 3.2	26 ± 3.4	26 ± 3.3
CSF Aβ42	274 ± 41	236 ± 67	157 ± 54
CSF Tau	54 ± 14	71 ± 24	105 ± 37
CSF P-tau181	26 ± 8	33 ± 14	51 ± 18

Comparisons between **AD** and controls

Shaw et al, 2009

Galasko et al, ICAD 2008

MCI, CSF biomarkers and the Alzheimer's Disease Neuroimaging initiative (ADNI)

Cutoffs for Aβ42, tau and Ptau181 came from a cohort of autopsy-proven AD and elderly controls.

CSF Aβ42 and tau/ Aβ42 predicted which MCI subjects progressed to AD in 12 months.

Shaw et al, 2009

CSF biomarkers and structural MRI in MCI

ADNI MCI subjects with an AD CSF profile showed greater atrophy at baseline and on follow-up

Fjell et al, 2010

Detecting an AD signature in **normals**

- Amyloid pathology is a likely initiating event in AD
- Deposition is followed by a long preclinical buildup of structural changes before symptoms emerge
- A *signature* of pathology in cognitively normal subjects should meet the following predictions:
 - Resembles the signature in AD-dementia
 - Increased frequency with age
 - Increased in genetically predisposed subjects
 - Predicts cognitive decline and progression to MCI and AD

Age, APO-E e4 and amyloid biomarkers

			A 80.0%			PIB PET +					
	Age of normal subjects	% with AD CSF	70.0% 60.0% 50.0% 40.0% 30.0% 20.0%		■ APOE4- ■ APOE4+		36.7%	15.6%	52.9%	16.0%	
ADNI	76 ± 5	31 - 38	10.0%	0.0%	(28)	8.2%	(30)	(45)	(17)	(25) (8)	
DESCRIPA normal	67 ± 6	31		40-	-59	60-	·69 /	70 Age	-79	80-89	
complaints	66 ± 8	52	80.0% 70.0% 60.0%		■ APOE4- ■ APOE4+	Morr	ris et	al, 20	10	66.71	
Galasko et al	67 ± 10	25	40.0% 40.0% 30.0% 20.0%		21.7%	16.7%	43.5%	23.3%			
			10.0% 0.0%	9.7% (31)	(23)	(36)	(23)	(30)	(11)	(11) (3)	

Age, y

60-69

45-59

70-79

80-89

CSF A β 42 in controls vs age and APO-E e4

CSF T-tau in controls vs age and APO-E e4

CSF P-tau181 in controls vs age and APO-E e4

Tau / A β 42 in controls vs age and APO-E e4

Do CSF biomarkers predict decline in normals?

61 subjects, initially CDR 0, mean age 75 HR for progression = 2.4 for tau/A β 42 and 1.8 for Ptau181/A β 42

Fagan et al, 2007

109 controls, mean age 70 HR for progression = 1.6 for tau/A β 42

Galasko et al, unpublished

CSF biomarkers in control subjects who progressed

Proteomic adventures 2D-DIGE

Craig-Shapiro et al

CSF discovery samples: NC AD Immunodeplete 6 highly abundant proteins Differential dye labels for: NC Pool Cy5 Cy3 Cy2 2D gel electrophoresis

MW (kDa) 100,000 75,000 50,000 37,000 25.000 20,000 15,000 10,000 **YKL40**

Fluorescence image analysis Excise differentially expressed spots Digest, sequence with MS

Compare levels in AD vs controls in Discovery and Validation cohorts

YKL40

A secreted 40 kD glycoprotein

In AD, YKL i.r. is in the vicinity of fibrillar amyloid plaques **(A,B,C)**.

Present within a subset of GFAPpositive astrocytes **(D)** and not in LN-3positive microglia **(E,F)**.

YKL-40 is also seen in swollen cell processes associated with plaques **(G)**; these lack reactivity for dystrophic neurite marker PHF-1 **(H,I)** and microglial marker LN-3 (**J,K,L**), and may represent astrocytic processes.

YKL-40 i.r. is also observed in occasional neurons in the superficial white matter **(M,N,O)**, some of which contain neurofibrillary tangles.

YKL40 levels were increased in CDR 1 vs 0 subjects in the discovery cohort, and in a larger independent sample in CDR 0.5 and 1 YKL40 levels correlated with tau and P-tau181 levels

CSF YKL-40/Aβ42 and tau/Aβ42 as predictors of

- A. conversion from CDR 0 to CDR>0 and
- **B** progression from CDR 0.5 to CDR>0.5.

Kaplan-Meier estimates of rates of conversion and progression are shown; red curves represent the upper tertile and black curves the lower two tertiles.

BDNF, aging and AD

- Identified in a proteomic CSF study using iTRAQ:
 ↓ in AD (Zhang et al, 2008)
- BDNF is an activity-dependent secreted protein
- Present at synapses; roles in synaptic plasticity, hippocampal neuronal circuits
- Can promote neurogenesis in dentate gyrus
- Enhances aspects of spatial memory in rodents
- BDNF knockout mouse shows impaired LTP
- An allelic variant (Val66Met) may be associated with poorer memory performance and smaller hippocampal volume in humans

CSF BDNF in aging and AD

CSF BDNF levels are decreased in AD vs controls $(202 \pm 31 \text{ vs } 242 \pm 33 \text{ pg/mL})$

In NC, levels decrease with age and Lower BDNF was associated with worse performance and greater 12 month decline in immediate and delayed recall and category fluency.

Independent of APOE e4, and CSF A β 42 and tau.

Li et al, 2009

Can CSF biomarkers help to map a cascade in AD?

Aβ toxic	Parts of the cascade	Potential biomarkers			
species	Damage to neurons and axons, tangle formation	Tau, P-tau neurofilaments			
× / / ×	Glial reaction	GFAP, YKL40			
	Inflammation	S100b, cytokines			
	Oxidative stress	F2-isoprostanes			
	Synaptic damage	?			
	Synaptic function and plasticity	Neurotransmitters ? sAPPα, sAPPβ BDNF			
	Trafficking	SORLA/LR11			
	Lipids, cholesterol	24-OH-cholesterol			
	Neurogenesis	? BDNF			

Thanks!!

- UCSD:
 - Helen Vanderswag
 - Barbara Cottrell
 - Steven Edland
- U Washington
 - Elaine Peskind
 - Gail Li
 - Thomas Montine
 - Gerry Schellenberg
 - Jing Zhang
- OHSU
 - Jeffrey Kaye
 - Joseph Quinn

- U Penn
 - Chris Clark
 - Virginia Lee
- Washington University
 - Rebecca Craig-Shapiro
 - Richard Perrin
 - Anne Fagan
 - David Holtzman

Funding support from NIA and VA

Research participants