The association of chr17q21 inversion with CSF-biomarkers and AD

MA IKRAM, C DECARLI

- Tau is one of the major hallmarks of AD
- In CSF, pTau levels associate with AD
- The genetics of tau in AD remain unclear
- MAPT lies in an inversion on chr17 (H1 and H2)
- Recently, this inversion has been associated with intracranial volume in older adults and head size measures in children

genetics

Common variants at 6q22 and 17q21 are associated with intracranial volume

M Arfan Ikram^{1-3,51}, Myriam Fornage^{4,5,51}, Albert V Smith^{6,7,51}, Sudha Seshadri^{8–10,51}, Reinhold Schmidt^{11,51}, Stéphanie Debette^{8,9,12}, Henri A Vrooman^{2,13}, Sigurdur Sigurdsson⁶, Stefan Ropele¹¹, H Rob Taal^{1,14,15}, Dennis O Mook-Kanamori^{1,14–16}, Laura H Coker¹⁷, W T Longstreth Jr¹⁸, Wiro J Niessen^{2,13,19}, Anita L DeStefano^{8–10}, Alexa Beiser^{8–10}, Alex P Zijdenbos²⁰, Maksim Struchalin¹, Clifford R Jack Jr²¹, Fernando Rivadeneira^{2,22}, Andre G Uitterlinden^{2,22}, David S Knopman²³, Anna-Liisa Hartikainen²⁴, Craig E Pennell²⁵, Elisabeth Thiering²⁶, Eric A P Steegers²⁷, Hakon Hakonarson^{28,29}, Joachim Heinrich²⁵, Lyle J Palmer³⁰, Marjo-Riitta Jarvelin^{31–34}, Mark I McCarthy^{35,36}, Struan F A Grant^{28,29}, Beate St Pourcain³⁷, Nicholas J Timpson³⁷, George Davey Smith³⁷, Ulla Sovio^{31,38}, the Early Growth Genetics (EGG) Consortium³⁹, Mike A Nalls⁴⁰, Rhoda Au^{8,11}, Albert Hofman^{1,3}, Haukur Gudnason⁶, Aad van der Lugt², Tamara B Harris⁴¹, William M Meeks^{42,43}, Meike W Vernooij^{1,2}, Mark A van Buchem⁴⁴, Diane Catellier⁴⁵, Vincent W V Jaddoe^{1,14,15}, Vilmundur Gudnason^{6,7}, B Gwen Windham^{42,43}, Philip A Wolf^{8,10}, Cornelia M van Duijn^{1,3}, Thomas H Mosley Jr^{42,43,52}, Helena Schmidt^{46,52}, Lenore J Launer^{41,52}, Monique M B Breteler^{1,3,47,52} and Charles DeCarli^{48,49,52} for the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium⁵⁰

- RSSI 42
- RSSII
- RSS III

421 679 1726

Total-8,175

Intracranial Volume

- A proxy for head size
- Remains constant throughout life
- Associated with height
- Associated with early life brain growth

Association with headsize – Ikram et al. Nat Genet 2012

chr17q21

Chr 17 inversion

- Consists of two haplotypes: H1 and H2
- H2 is associated with smaller head size
 - Possible risk for late life dementia
 - New evolutionary development versus founder effect
 - × Found almost only in Caucasians
- H2 has very little recombination (high LD)
- H1 shows considerable recombination with many SNPs present

 To investigate association of chr17 inversion with CSF levels of tau and ptau

 To investigate association of chr17 inversion with AD

ADNI dataset

- Publicly available dataset
- Persons with genotype data and CSF markers (n~390)
- "Inversion-wide" association study
- Associate significant SNP(s) with clinical diagnosis (NC, MCI, AD)

P-TAU

TAU

ABETA

Rs11655764 is the 'top'-SNP associated with p-tau levels

• G-allele of rs11655764 associated with higher ptaulevels compared to A-allele

• However, Rs11655764 only shows variation in H1 carriers. H2 carriers do not show any variation and always carry the G-allele due to the primarily Caucasian population

Potential "Haplotypes"

• H1 carriers with A-allele of rs11655764

• H1 carriers with G-allele of rs11655764

• H2 carriers with G-allele of rs11655764

Aim II

- Examine the impact of Haplotype on risk for prevalent cognitive impairment
 - Hypotheses:
 - x rs11655764 G-allele will be associated with increased risk for cognitive impairment
 - × H2 will be associated with increased risk for cognitive impairment
 - × H2/ rs11655764G will be at greatest risk for cognitive impairment

NC versus AD

MCI versus AD

Conclusion

• Rs11655764, located in the chr17 inversion, is associated with higher p-tau levels

The SNP also associates with higher risk of AD

 However, there is effect modification of this association by the H2-haplotype where the H2 unexpectedly is protective

Future Directions

- Larger datasets are needed
 - AD Centers could contribute
 - ADNI II
- Use amyloid imaging as marker of CSF amyloid
- Deep sequencing