Alzheimer's Disease Genetics Consortium

Perelman School of Medicine University of Pennsylvania

Alzheimer's Disease Genetics Consortium

- Genome-wide association studies progress
- NIA/NHGRI Alzheimer's Disease Sequencing Project - ADSP

LETTERS

genetics

Common variants at *MS4A4/MS4A6E*, *CD2AP*, *CD33* and *EPHA1* are associated with late-onset Alzheimer's disease

The Alzheimer Disease Genetics Consortium (ADGC) performed a genome-wide association study of late-onset Alzheimer disease using a three-stage design consisting of a discovery stage (stage 1) and two replication stages (stages 2 and 3). Both joint analysis and meta-analysis approaches were used. We obtained genome-wide significant results at MS4A4A (rs4938933; stages 1 and 2, meta-analysis $P(P_M) = 1.7 \times 10^{-9}$, joint analysis $P(P_I) =$ 1.7×10^{-9} ; stages 1, 2 and 3, $P_{\rm M} = 8.2 \times 10^{-12}$), CD2AP (rs9349407; stages 1, 2 and 3, $P_{\rm M} = 8.6 \times 10^{-9}$), EPHA1 (rs11767557; stages 1, 2 and 3, $P_{\rm M} = 6.0 \times 10^{-10}$) and CD33 (rs3865444; stages 1, 2 and 3, $P_{\rm M} = 1.6 \times 10^{-9}$). We also replicated previous associations at CR1 (rs6701713; $P_{\rm M} = 4.6 \times 10^{-10}$, $P_{\rm I} = 5.2 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$, $P_{\rm I} = 1.9 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$, $P_{\rm I} = 1.9 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$), $P_{\rm I} = 1.9 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$), $P_{\rm I} = 1.9 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$), $P_{\rm I} = 1.9 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$), $P_{\rm I} = 1.9 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$), $P_{\rm I} = 1.9 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$), $P_{\rm I} = 1.9 \times 10^{-11}$), CLU (rs1532278; $P_{\rm M} = 8.3 \times 10^{-8}$), $P_{\rm I} = 1.9 \times 10^{-11}$), $P_{\rm I} = 10^{-11}$), $P_{$ 10^{-8}), BIN1 (rs7561528; $P_{\rm M} = 4.0 \times 10^{-14}$, $P_{\rm I} = 5.2 \times 10^{-14}$) and *PICALM* (rs561655; $P_{\rm M} = 7.0 \times 10^{-11}$, $P_{\rm I} = 1.0 \times 10^{-10}$), but not at EXOC3L2, to late-onset Alzheimer's disease susceptibility¹⁻³.

Adam C. Naj, Gyungah Jun, Gary W. Beecham, Li-San Wang, Badri Narayan Vardarajan, Jacqueline Buros, Paul J. Gallins, Joseph D. Buxbaum, Gail P. Jarvik, Paul K. Crane, Eric B. Larson, Thomas D. Bird, Bradley F. Boeve, Neill R. Graff-Radford, Philip L. De Jager, Denis Evans, Julie A. Schneider, Minerva M. Carrasquillo, Nilufer Ertekin-Taner, Steven G. Younkin, Carlos Cruchaga, John S.K. Kauwe, Petra Nowotny, Patricia Kramer, John Hardy, Matthew J. Huentelman, Amanda J Myers, Michael M. Barmada, F Yesim Demirci, Clinton T. Baldwin, Robert C. Green, Ekaterina Rogaeva, Peter St George-Hyslop, Steven E. Arnold, Robert Barber, Thomas Beach, Eileen H. Bigio, James D. Bowen, Adam Boxer, James R. Burke, Nigel J. Cairns, Chris S. Carlson, Regina M. Carney, Steven L. Carroll, Helena C. Chui, David G. Clark, Jason Corneveaux, Carl W. Cotman, Jeffrey L. Cummings, Charles DeCarli, Steven T. DeKosky, Ramon Diaz-Arrastia, Malcolm Dick, Dennis W. Dickson, William G. Ellis, Kelley M. Faber, Kenneth B. Fallon, Martin R. Farlow, Steven Ferris, Matthew P. Frosch, Douglas R. Galasko, Mary Ganguli, Marla Gearing, Daniel H. Geschwind, Bernardino Ghetti, John R. Gilbert, Sid Gilman, Bruno Giordani, Jonathan D. Glass, John H. Growdon, Ronald L. Hamilton, Lindy E. Harrell, Elizabeth Head, Lawrence S. Honig, Christine M. Hulette, Bradley T. Hyman, Gregory A. Jicha, Lee-Way Jin, Nancy Johnson, Jason Karlawish, Anna Karvdas, Jeffrev A, Kave, Ronald Kim, Edward H, Koo, Neil W, Kowall, James J, Lah, Allan I, Levev, Andrew P. Lieberman, Oscar L. Lopez, Wendy J. Mack, Daniel C. Marson, Frank Martiniuk, Deborah C. Mash, Eliezer Masliah, Wayne C. McCormick, Susan M. McCurry, Andrew N. McDavid, Ann C. McKee, Marsel Mesulam, Bruce L. Miller, Carol A. Miller, Joshua W. Miller, Joseph E. Parisi, Daniel P. Perl, Elaine Peskind, Ronald C. Petersen, Wayne W Poon, Joseph F. Quinn, Ruchita A. Rajbhandary, Murray Raskind, Barry Reisberg, John M. Ringman, Erik D. Roberson, Roger N. Rosenberg, Mary Sano, Lon S. Schneider, William Seeley, Michael L. Shelanski, Michael A. Slifer, Charles D. Smith, Joshua A. Sonnen, Salvatore Spina, Robert A. Stern, Rudolph E. Tanzi, John Q. Trojanowski, Juan C. Troncoso, Vivianna M. Van Deerlin, Harry V. Vinters, Jean Paul Vonsattel, Sandra Weintraub, Kathleen A. Welsh-Bohmer, Jennifer Williamson, Randall L. Woltjer, Laura B. Cantwell, Beth A. Dombroski, Duane Beekly, Kathryn L. Lunetta, Eden R. Martin, M. Ilyas Kamboh, Andrew J. Saykin, Eric M. Reiman, David A. Bennett, John C. Morris, Thomas J. Montine, Alison M. Goate, Deborah Blacker, Debby W. Tsuang, Hakon Hakonarson, Walter A. Kukull, Tatiana M. Foroud, Jonathan L. Haines, Richard Mayeux, Margaret A. Pericak-Vance, Lindsay A. Farrer & Gerard D. Schellenberg

Stage	Cases (% autopsied)	Controls (% autopsied)
Discovery	8,309 (45%)	7,366 (20%)
Replication – 1	3,531 (29%)	3,565 (6%)
Replication – 2	6,283	7,165
Total:	18,123	18,096

- Discovery and Replication 1: ADGC. All controls are cognitively normal elderly
- Replication 2: CHARGE, EADI, and GERAD

Chromosome	Gene	cases	controls	p-value	OR (95% CI)	MAF
19	TOMM40 (APOE)	10,011	8,949	5.7 x 10 ⁻²⁷⁶	2.74 (2.59 – 2.90)	0.24
8	CLU/APOJ	11,840	10,931	8.5 x 10 ⁻¹⁰	0.86 (0.82 – 0.90)	0.37
11	PICALM	11,840	10,931	5.7 x 10 ⁻¹¹	0.87 (0.83 – 0.91)	0.31
1	CR1	11,840	10,931	1.2 x 10 ⁻¹⁰	1.17 (1.12 – 1.23)	0.21
2	BIN1	11,840	10,931	4.2 x 10 ⁻¹⁴	1.17 (1.13 – 1.22)	0.35
6	CD2AP	19,490	31,000	8.6 x 10 ⁻⁹	1.11 (1.07 – 1.17)	0.27
7	EPHA1	19,490	36,770	6.0 x 10 ⁻¹⁰	0.90 (0.86 – 0.93)	0.19
11	MS4A4	11,840	10,931	2.6 x 10 ⁻¹¹	0.87 (0.84 – 0.91)	0.37
19	ABCA7	11,840	10,931	5.8 x 10 ⁻⁷	1.15 (1.09 – 1.21)	0.19
19	CD33	19,490	31,000	1.6 x 10 ⁻⁹	0.91 (0.88 – 0.93)	0.31

Data from Naj et al. (2011) Nature Genetics 43, 436 - 441

ADGC projects

Expand GWAS dataset International Genomics Alzheimer Project (IGAP)

Age at Onset GWAS *APOE* GWAS Neuropath GWAS CSF biomarker GWAS Cognitive decline GWAS African American GWAS Japanese GWAS Hispanic GWAS Exome Chip Adam Naj/Peggy Pericak-Vance Gyungah Jun/Lindsay Farrrer Gary Beecham/Tom Montine Carlos Cruchaga/Alison Goate Lori Chibnik/David Bennet Christiane Reitz Gyungah Jun/Lindsay Farrrer Richard Mayeux Li-San Wang/Adam Naj

ADC Contribution

	Phase 1/MDS	Phase 2/UDS	Total
NACC Subjects	4,727	24,190	28,917
Received at NCRAD			
Tissue	3,519	0	3,519
DNA	255	9,488	9,743
Blood	0	931	931
Buffy Coat	0	609	609
Total Submitted	3,774	11,028	14,802
Illumina 660/Omni Express	2,990	7,046	10,036
Exome Chip	2,673	4,418	7,091

ADGC Genotyping

Cohort	Cases	Controls	Other	Total
ACT	20	7	372	399
ADC*	5341	3617	1078	10,036
Miami	92	71	3	166
ROS/MAP	81	68	501	650
TARCC	203	97	0	300
Vanderbilt	17	81	4	102
WHICAP	82	605	0	687
СНАР	16	54	778	848
Total	5,874	5,835	2,770	14,479

Other Genotype Data Contributed

Cohort	Cases	Controls	Total
ACT	566	1696	2262
ADNI	268	173	441
GenADA	669	713	1382
London	61	137	198
Мауо	728	1173	1901
Merck/NYU	392	159	551
MIRAGE	509	753	1262
NIA-LOAD	1811	1575	3386
OHSU	132	153	285
Pfizer	733	792	1525
ROS/MAP	296	776	1072
TGen	864	493	1357
Univ Pittsburgh	1271	841	2112
Wash U	339	187	526
Total	8639	9621	18260

ADGC Genotyping – CSF cohorts

Cohort	Cases	Controls	Other	Total
BIOCARD*	0	244	105	349
Blennow/Sweden*	300	0	0	300
Peskind/UW	0	0	269	269
Vanderbilt	17	81	4	102
Wash U	113	233	197	543
Total	430	558	575	1563

*Genotyping in progress

Cohort	Total
Mayo Rochester	636

Samples received 7/11/2012

	cases	controls	other	total
Current analysis	130	314	470	914
Final analysis	430	558	1,106	2,094

African American GWAS

1,970 cases 3,932 controls

NIA-ADC CHAP CU Mayo Clinic U Miami Vanderbilt **NIA-LOAD** families NCRAD families **ROS/MAP** MARS/CORE U Pittsburgh Washington U WHICAP OHSU **Duke University** Indianapolis New York U U California San Francisco U Texas Southwestern

		Cases		_	Controls			
Cohort	Ν	percent female	Onset age mean (SD)	1	N	percent female	Age at exam mean (SD)	Total
Japanese-1 Japanese-2 Korean Caucasian	1,008 885 339 11,840	72% 63% 72% 71%	73.0 (4.3) 74.3 (7.0) NA 76.4 (5.2)	1, 98 1, 10	016 35 129),931	57% 63% 49% 59%	77.0 (5.9) 73.7 (5.8) 71.0 (4.9) 76.8 (3.6)	2,024 1,870 1,469 22,771
Totals	15,963			16	5,062	2		32,027

	Cases			Contro		
Cohort	ε2	ε3	ε4	ε2	ε3	ε4
Japanese-1	0.02	0.63	0.33	0.04	0.87	0.09
Japanese-2	0.02	0.69	0.29	0.05	0.86	0.09
Korean	0.02	0.69	0.27	0.06	0.83	0.09
Caucasian	0.04	0.61	0.27	0.08	0.78	0.14

	Japanese (Stage 1 + 2)		Korea	Korean (Stage 3)		ian (Stage 4)	Meta-Analysis	
SNP	MAF	OR (95% CI) P value	MAF	OR (95% CI) P value	MAF	OR (95% CI) P value	OR (95% CI) P value	
rs11218343	0.34	0.83 (0.75-0.92) 3.8 x 10 ⁻⁴	0.31	0.96 (0.79-1.17) 0.68	0.04	0.75 (0.67-0.83) 1.0 x 10 ⁻⁷	0.81 (0.75-0.87) 2.2 x 10 ⁻⁹	
rs3781834	0.23	0.74 (0.66-0.84) 7.3 x 10 ⁻⁷	0.23	0.94 (0.75-1.16) 0.55	0.02	0.78 (0.68-0.90) 7.9 x 10 ⁻⁴	0.78 (0.72-0.85) 9.9 x 10 ⁻⁹	

Meta-analysis of top-ranked association results with *SORL1* in Japanese, Korean, and Caucasian datasets.

IGAP: International Genomics Alzheimer Project

- EADI France and Europe
- ADGC USA

 CHARGE – USA + Europe population based cohorts

- Philippe Amouyel
- **Gerard Schellenberg**
- Sudha Seshadri

GERAD – Great Britain

Julie Williams

Stage 1 Subjects

AD cases

Controls

Consortium	Ν	% women	Mean Onset Age	Ν	% women	Mean Age at last exam
ADGC (13 cohorts)	10,273	42-70	71–86	10,892	37–72	72–84
CHARGE (4 cohorts)	1,315	50–75	80–86	21,776	45–62	69–76
EADI	2,243	64.9	68.5 (8.9)	6,017	60.7	74.0 (5.4)
GERAD	3,177	64.0	73.0 (8.5)	7,277	51.8	51.0 (11.8)
Totals	17,008			45,962		

ADGC cohorts:	Alzheimer's disease centers
	case-control studies
	family-based cohorts

CHARGE:	Rotterdam Study
	Framingham
	Age, Gene, Environment Study
	Cardiovascular Health Study

- Stage 1: discovery data set genome-wide SNP arrays
- Stage 2: custom chip from stage 1 data ~50,000 SNPs p < 0.001
 - Genotype: 14,000 new cases 14,000 new controls

Exome Chip Content

Non-synonymous Variants	243,094
Splice site variants	12,662
Stop Altering Variants	7,137
Previously Described GWAS Hits	5,325
Ancestry Informative Markers	
European descent versus African Americans	3,241
European descent versus Native Americans	998
Scaffold for Identity by Descent	5,710
Grid of common variants	5,286
Random set of synonymous variants	4,651
Fingerprint SNPs	259
Mitochondrial SNPs	246
Chromosome Y SNPs	128
HLA tag SNPs	2,459
Indels	181

Exome Chip

Cohort	Cases	Controls	Total
ADC	177	138	315
NIMH	396	0	396
NIA-LOAD	797	481	1,278
NCRAD	417	0	417
MIRAGE	633	0	633
Miami	219	0	219
Vanderbilt/Miami	970	917	1,887
АСТ	423	1,615	2,038
Genetic Differences	356	356	712
WHICAP	78	337	415
Univ of Toronto	87	0	87
GSK	101	0	101
Нартар	0	48	48
Subtotal	4,652	3,892	8,544
Genentech ADC	2,673	4,418	7,091
Total	7,325	8,310	15,635

NIH Scrambling to Shift \$50 Million Into Alzheimer's Research by <u>Jocelyn Kaiser</u> on 8 February 2012

setting aside \$50 million for

Alzheimer's studies from this year's budget.

As for the \$50 million from this year's budget, half will go to genomics studies, NIH Director Francis Collins said <u>yesterday</u>.

using DNA from the same groups of Alzheimer's patients and healthy people that were part of the GWAS studies. Those cohorts give the initiative "a great head start and is why something like that could actually be done this year," Hodes says. Hypothesis:

- Rare-variants contribute to late-onset Alzheimer's disease
- These rare variants have a larger effect size than most GWAS loci
- These rare variants can be detected by new DNA sequencing methodology

Need a large sample size

Whole exome sequencing – only sequence exons

- less expensive than whole-genome sequencing (~\$1,000/subject)
- can do more samples
- miss all variants not in exons
- limited ability to detect structural variants
- exome chip may detect most rare exonic variants

A mutation in *APP* protects against Alzheimer's disease and age-related cognitive decline

Thorlakur Jonsson¹, Jasvinder K. Atwal², Stacy Steinberg¹, Jon Snaedal³, Palmi V. Jonsson^{3,8}, Sigurbjorn Bjornsson³, Hreinn Stefansson¹, Patrick Sulem¹, Daniel Gudbjartsson¹, Janice Maloney², Kwame Hoyte², Amy Gustafson², Yichin Liu², Yanmei Lu², Tushar Bhangale², Robert R. Graham², Johanna Huttenlocher^{1,4}, Gyda Bjornsdottir¹, Ole A. Andreassen⁵, Erik G. Jönsson⁶, Aarno Palotie⁷, Timothy W. Behrens², Olafur T. Magnusson¹, Augustine Kong¹, Unnur Thorsteinsdottir^{1,8},

Case-control study

Cases: Subjects who develops Alzheimer's disease despite having a "low risk" profile based on gender, age, APOE genotypes
e.g. - male, APOE ε2/ε3 or ε2/ε3 who develops Alzheimer's disease at 60 yrs.

Case-control study

Family-based study

- Select families with multiple affected subjects
- At least 4 affected sampled
- Perform whole-genome sequencing on 3 subjects/family
- Use genome-wide SNP data in other subjects to track variants
- Families are likely to be highly loaded with genetic variants
- Can use co-segregation to examine candidate variants
- Unlikely that these are "Mendelian" families (highly penetrant dominant or recessive variants)
- Co-segregation will not be perfect

Top 100 families Whole-genome sequencing on 3/family

ADGC	Laura Cantwell
NACC	Bud Kukull/Duane Beekly
NCRAD	Tatiana Foroud/Kelly Faber
NIAGADS	Li-San Wang

Answer: The $\epsilon 2/\epsilon 3/\epsilon 4$ polymorphism completely explains the effect of *APOE* on Alzheimer's disease risk

> not *TOMM40* genotypes (poly-T) not *APOE* promoter SNPs not another gene in the *APOE* region

Do TOMM40 genotypes influence Alzheimer's disease risk?

Is the APOE association fully explained by $\epsilon 2/\epsilon 3/\epsilon 4$?

IGAP: Previously Identified Late-onset Alzheimer's Disease Genes

		Stage 1 mega-r	neta analysis	Stage 2- Custom array		age 2- Custom array Stage 1 + Stage 2	
SNP	Chr	Closest gene	Meta P-value	OR (95% CI)	Meta P-value	OR (95% CI)	Meta P-value
rs6656401	1	CR1	7.7x10 ⁻¹⁵	1.20 (1.13-1.27)	3.0x10 ⁻¹⁰	1.18 (1.14-1.22)	2.2x10 ⁻²³
rs6733839	2	BIN1	1.7x10 ⁻²⁶	1.23 (1.18-1.29)	1.0x10 ⁻¹⁸	1.22 (1.18-1.25)	1.3x10 ⁻⁴³
rs10948363	6	CD2AP	3.3x10 ⁻⁸	1.10 (1.04-1.15)	2.6x10 ⁻⁴	1.10 (1.07-1.13)	3.4x10 ⁻¹¹
rs75045569	7	EPHA1	2.8x10 ⁻¹¹	0.89 (0.84-0.95)	2.6x10 ⁻⁴	0.87 (0.84-0.90)	3.8x10 ⁻¹⁴
rs9331896	8	CLU	9.6x10 ⁻¹⁷	0.86 (0.82-0.90)	1.4x10 ⁻⁹	0.86 (0.84-0.89)	8.2x10 ⁻²⁶
rs11824773	11	MS4A4A	3.7x10 ⁻¹²	0.93 (0.89-0.97)	1.6x10 ⁻³	0.91 (0.88-0.93)	4.8x10 ⁻¹⁴
rs10792832	11	PICALM	6.5x10 ⁻¹⁶	0.86 (0.82-0.90)	4.2x10 ⁻¹⁰	0.87 (0.85-0.90)	2.6x10 ⁻²⁴
rs4147929	19	ABCA7	1.7x10 ⁻⁹	1.14 (1.08-1.21)	4.2x10 ⁻⁶	1.14 (1.11-1.19)	3.6x10 ⁻¹⁴
rs3865444	19	CD33	5.1x10 ⁻⁸	0.99 (0.93-1.04)	6.4x10 ⁻¹	0.94 (0.91-0.96)	2.6x10 ⁻⁶

IGAP: Meta-analysis Late-onset Alzheimer's Disease Genes Confirmed in Second Stage

		Stage 1 mega-meta analysis		Stage 2- Custom array		Stage 1 + Stage 2	
SNP	Chr	Closest Gene	Meta P-value	OR (95% CI)	Meta P-value	OR (95% CI)	Meta P-value
6:32,578,476	6	HLA-DRB5/HLA-DRB1	1.7x10 ⁻⁸	1.14 (1.08-1.20)	6.3x10 ⁻⁷	1.12 (1.09-1.16)	6.5x10 ⁻¹⁴
rs28834970	8	РТК2В	3.3x10 ⁻⁹	1.11 (1.06-1.16)	1.5x10 ⁻⁵	1.10 (1.07-1.13)	2.2x10 ⁻¹³
rs11218343	11	SORL1	5.0x10 ⁻¹¹	0.82 (0.73-0.92)	6.6x10 ⁻⁴	0.78 (0.73-0.83)	1.9x10 ⁻¹³
rs10498633	14	SLC24A4/RIN3	1.5x10 ⁻⁷	0.92 (0.87-0.98)	4.5x10 ⁻³	0.91 (0.88-0.94)	3.1x10 ⁻⁹
rs8093731	18	DSG2	4.6x10 ⁻⁸	1.03 (0.80-1.32)	8.2x10 ⁻¹	0.72 (0.61-0.84)	7.5x10 ⁻⁵
rs927174	20	CASS4	1.5x10 ⁻⁸	0.93 (0.87-1.02)	1.2x10 ⁻¹	0.89 (0.85-0.92)	1.7x10 ⁻⁸

HLA-DRB1/5 major histocompatibility complex class II DR beta 1/5

- PTK2B protein tyrosine kinase 2 beta
- SORL1 Sortilin-related protein 1
- SLC24A4solute carrier family 24 (sodium/potassium/calcium exchanger) member 4RIN3Ras and Rab interactor 3
- CASS4 Cas scaffolding protein family member 4

Table 1						
Misclassification/Heterogeneity at Risk Loci						
Design	Cases	Controls				
1. WGS, balanced (1500/1500)	0	0				
2. WGS, unbalanced (3500/1500)	0	0				
3. WGS, balanced (2500/2500)	0	0				
4. WGS, protective (2500/2500)	1.00	0.082				
5. WES, reduced (5000/5000)	0	0.002				
6. WES, full (10000/10000)	0.099	0.021				
Misclassification/Heterogeneity at Protective Loci						
Design	Cases	Controls				
1. WGS, balanced (1500/1500)	0	0				
2. WGS, unbalanced (3500/1500)	0	0				
3. WGS, balanced (2500/2500)	0	0				
4. WGS, protective (2500/2500)	0	0.082				
5. WES, reduced (5000/5000)	0	0.008				
6. WES. full (10000/10000)	0	0.179				

SNP Gene		OR (95% CI)	P value
rs2965109	CEACAM16	0.81 (0.78-0.85)	4.43 x 10 ⁻²¹
rs2075650	TOMM40	2.81 (2.66-2.97)	1.28 x 10 ⁻²⁹⁹
rs4420638	APOCI	3.64 (3.42-3.87)	1.00 x 10 ⁻³⁰⁰
rs10415983	EXOC3L2	1.19 (1.13-1.26)	5.11 x 10 ⁻¹⁰

		Basic Model		
SNP	Gene	OR (95%CI)	P value	
rs17643262 rs7249082	NKPD1 EXOC3L	1.33 (1.25–1.42) 1.19 (1.12–1.25)	5.1 x 10 ⁻¹⁴ 1.1 x 10 ⁻⁹	

	Basic mod		
	OR (95% CI)	P value	
AD	2.83 (1.62-2.68)	3.9 x 10 ⁻³³	

A mutation in *APP* protects against Alzheimer's disease and age-related cognitive decline

Thorlakur Jonsson¹, Jasvinder K. Atwal², Stacy Steinberg¹, Jon Snaedal³, Palmi V. Jonsson^{3,8}, Sigurbjorn Bjornsson³, Hreinn Stefansson¹, Patrick Sulem¹, Daniel Gudbjartsson¹, Janice Maloney², Kwame Hoyte², Amy Gustafson², Yichin Liu², Yanmei Lu², Tushar Bhangale², Robert R. Graham², Johanna Huttenlocher^{1,4}, Gyda Bjornsdottir¹, Ole A. Andreassen⁵, Erik G. Jönsson⁶, Aarno Palotie⁷, Timothy W. Behrens², Olafur T. Magnusson¹, Augustine Kong¹, Unnur Thorsteinsdottir^{1,8},

190 | NATURE | VOL 487 | 12 JULY 2012

LETTER

A mutation in *APP* protects against Alzheimer's disease and age-related cognitive decline

Thorlakur Jonsson¹, Jasvinder K. Atwal², Stacy Steinberg¹, Jon Snaedal³, Palmi V. Jonsson^{3,8}, Sigurbjorn Bjornsson³, Hreinn Stefansson¹, Patrick Sulem¹, Daniel Gudbjartsson¹, Janice Maloney², Kwame Hoyte², Amy Gustafson², Yichin Liu², Yanmei Lu², Tushar Bhangale², Robert R. Graham², Johanna Huttenlocher^{1,4}, Gyda Bjornsdottir¹, Ole A. Andreassen⁵, Erik G. Jönsson⁶, Aarno Palotie⁷, Timothy W. Behrens², Olafur T. Magnusson¹, Augustine Kong¹, Unnur Thorsteinsdottir^{1,8},

190 | NATURE | VOL 487 | 12 JULY 2012

Table 1	ADD 4673T	protocte	against	Alzhaimar's	disaase
I able T	AFF 40731	protects	agamst	Alzheimer s	uisease

Analysis	1/OR	OR	P value	Controls		
				Frequency (%)	N _{chip}	N _{in silico}
AD	-	-	-	0.13	2,199	849
AD versus population controls	4.24	0.236	$4.19 imes 10^{-5}$	0.45	57,174	22,074
AD versus population controls aged 85 or greater AD versus cognitively intact controls at age 85	5.29 7.52	0.189 0.133	4.78×10^{-7} 6.92×10^{-6}	0.62 0.79	7,653 827	1,350 407

The table shows association results, comparing patients with Alzheimer's disease (AD) to three different control groups (top line gives numbers for patients with Alzheimer's disease only). N_{chip}, number of individuals with chip-based genotype information; N_{in silico}, number of individuals with genealogy-based genotype information.

		frequency	n	_
Alzheimer's disease	7,325	0.00007	1	Icelandic
Elderly controls	8,310	0.00006	1 4	

Chr 8 CLU/PTK2B

- Cholesterol metabolism
- Inflammation
- Adaptive immunity
- Synaptic vesicle trafficking
- Intracellular vesicle trafficking (exocytosis)

IGAP: International Genomics Alzheimer Project

