Consequences of tau expression in the entorhinal cortex: Synaptic Propagation of tau and synaptic degeneration

Brad Hyman MDPhD

Mass General Hospital, Boston

Generation of EC / perforant pathway transgenic line

Responder transgene tdTomato/synaptophysin-GFP tet0 X Activator transgene Neuropsin promoter tTA

Yasuda and Mayford 2006

Reporter genes reveal exquisite anatomic specificity of neuropsin promoter mice

Generation of rTauP301L EC line

Responder transgene

Santa Cruz et al 2005

X

Activator transgene

Neuropsin promoter tTA

Yasuda and Mayford 2006

hTau ICC shows transgene in Entorhinal and perforant pathway terminal zone at 3 months of age

Degeneration of the terminal zone of the perforant pathway

Human tau protein is present in cells with little or no human tau mRNA As determined by double immunohistochemistry/in situ followed by laser capture microdissection and qPCR for human tau

rTauEC mice: Preliminary results of transgene suppression

Propagation of tau pathology blocked by tau suppression

Propagation blocked to some extent by tau suppression

Transgene suppression ameliorates neuronal loss as well

Loss of perforant path terminals leads to synaptic dysfunction and plasticity response

Suppression of transgene leads to partial blockade of tau propagation and recovery of plasticity phenotype

Deafferentation: Synaptic loss specifically in the perforant pathway terminal zone at 24 months

Reinnervation of the perforant pathway terminal zone in Alzheimer disease

Hyman 1987

AChE staining reveals sprouting into the middle molecular layer

Mechanisms of neurodegeneration: implications of the rTauEC line

- 1. Propagation of misfolded tau across neural systems, leading to propagation of inclusions across neural systems
 - Human and mouse tau co-aggregate in these inclusions
 - Mechanism of propagation still uncertain toxic species unknown
- 2. Suppression of tau transgene leads to a delay (or reversal?) in propagation phenotype
- 3. Neuronal loss appears to be a late phenomenon
- 4. Synaptic loss, though modest, is sufficient to initiate a classic plasticity sprouting response
- 5. We speculate that the propagation of tau, deafferentation, and altered plasticity lead to progressive neural system failure that in some ways is analogous to the progressive neuropathological changes in AD

Acknowledgements

Massachusetts General Hospital

Alix DeCalignon
Manuela Polydoro
Teresa Gomez-Isla
Tara Spires

Collaborators

Karen Ashe George Carlson N Sahara

Support: AHAF, AFAR
NIH
Alzheimer Association