Does Transmission Of Pathological Alpha-Synuclein (A-Syn) Account For The Progression Of Parkinson's Disease (PD) Including In The 50% Of Alzheimer Patients With PD And A-Syn Pathology?

John Q. Trojanowski, M.D., Ph.D. Alzheimer's Disease Core Center, Udall Parkinson's Disease Center, Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA

Aging Related Neurodegenerative Diseases Are Characterized By Misfolded Disease Proteins

Disease	Lesions	Components	
Alzheimer's Disease (A multi-proteinopathy)	SPs (100%) NFTs (100%) LBs (50%) TDP-43 (50%)	Aβ Tau α-Synuclein TDP-43	
Frontotemporal Diseases	Inclusions	Tau, TDP-43, FUS	
Amyotrophic Lateral Sclerosis	Inclusions	TDP-43, FUS, Tau	
Parkinson's disease +/- Dementia	LBs	α-Synuclein	
Multiple System Atrophy	GCIs	α-Synuclein	
Prion diseases	SPs	Prions	
Trinucleotide repeat diseases	Inclusions	Expanded polyglutamine repeats	

PARKINSON'S DISEASE

Prevalence 1% >60 years of age; ~5% >85 years of age PD is chronic, progressive Mean disease duration 10-15 years from diagnosis until death

Motor symptoms

- Tremor, bradykinesia, rigidity, postural instability
- Degeneration of nigrostriatal pathway, loss of dopamine innervation to basal ganglia

Non-motor

- Impaired olfaction, incontinence, disrupted sleep, hallucinations
- May preseed motor symptoms
- 80% of PD patients develop dementia after living with disease for > 10 years
- Not dopamine related

Pathological Alpha-Synuclein is Closely Correlated with PD and Related Neurodegenerative Diseases

Histopathological evidence

- Aggregates detected in synucleinopathies
- Parkinson's Disease (PD), Dementia with Lewy bodies
- Multiple System Atrophy (MSA)
- Distribution of aggregates correlates with symptoms (prion-like transmission?)

Genetic evidence

- Familial risk (OR 1.2 4)
- Point mutations (A53T, A30P and E46K)
- Gene duplication and triplication

• GWAS reproducibly link variations at α-syn related loci (*SNCA, MAPT, REP1, RAB7*) to sporadic PD populations

Experimental evidence

- Overexpression in transgenic mice, flies, C.elegans
- Adeno/Lentiviral overexpression in rats, primates
- α-synuclein aggregate formation → behavioral deficits/neurodegeneration/premature death

Exogenous α -synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells

Kelvin C. Luk, Cheng Song, Patrick O'Brien, Anna Stieber, Jonathan R. Branch, Kurt R. Brunden, John Q. Trojanowski, and Virginia M.-Y. Lee¹

Center for Neurodegenerative Disease Research, Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283

PNAS | November 24, 2009 | vol. 106 | no. 47 | 20051-20056

Exogenous α -Synuclein Fibrils Induce Lewy Body Pathology Leading to Synaptic Dysfunction and Neuron Death

Laura A. Volpicelli-Daley,¹ Kelvin C. Luk,¹ Tapan P. Patel,² Selcuk A. Tanik,¹ Dawn M. Riddle,¹ Anna Stieber,¹ David F. Meaney,² John Q. Trojanowski,¹ and Virginia M.-Y. Lee^{1,*} ¹Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104 USA ²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA ^{*}Correspondence: vmylee@upenn.edu DOI 10.1016/j.neuron.2011.08.033 Neuron 72, 57–71, October 6, 2011

Seeded inclusions exhibit biochemical properties of human Lewy bodies

Luk et al, PNAS, 2009

α-Syn fibril Transduction in Primary Neurons

Eventionad Blitzle Get B desaling reli bygglolegy) state Ged a Bsyl) soma

α-Syn-hWT pre-formed fibrils (pffs) recruit endogenous α-syn to form pathologic, insoluble aggregates

Ultrastructure analysis of α-syn aggregates

Article

Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice

Kelvin C. Luk, Victoria M. Kehm, Bin Zhang, Patrick O'Brien, John Q. Trojanowski, and Virginia M.Y. Lee

Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

Brief Summary

- Intracerebral injections of brain homogenates from symptomatic A53T α-syn Tg mice with α-Syn pathology or synthetic α-syn fibrils accelerate formation of α-syn inclusions and clinical disease
- 2) Pathologic α-syn propagates along CNS pathways far beyond injection sites and reduces survival in inoculated Tg mice
- 3) Synthetic α-syn fibrils are sufficient to initiate PD-like α-syn pathology and transmit disease *in vivo*
- 4) These findings open up new avenues for understanding the progression of PD and developing novel therapies for PD

Neuronal alpha-synucleinopathy with severe movement disorder disorder in mice expressing A53T human alpha-synuclein. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM-Y. Neuron, 34:521-533, 2002

Initiation and synergistic fibrillization of tau and alpha-synuclein Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CI, Kotzbauer PT, Trojanowski JQ, Lee VM-Y.

Science, 300:636-640, 2003.

6744

α-Syn Filaments can be Isolated from A53T Tg Mice

Symptomatic Brain Lysate Injections Induce the Accumulation of Abnormal α-Syn in Transgenic mice

Luk et al., JEM, online, 2012

M83 α -syn Tg mice do not develop motoric phenotype until >10 months of age

Seeded a-Syn Pathology Develops in a Time Dependent Manner

Symptomatic lysate contains pathologic agent

Recombinant α-Syn Preformed Fibrils (PFFs) Accelerate α-Syn Pathology *in vivo*

Luk et al., JEM, online, 2012

FrC	Ctx*	Str*	Thal	BS	SC
PFF (30 days)			J. C.	1	
PFF (90 days)					
Non-injected (symptomatic)					

Transmission Induced α-Syn Inclusions In M83 Tg Mice Resemble Authentic Human Lewy Bodies/Neurites

Transmission Induced α-Syn Inclusions Resemble Authentic α-Syn Biochemical Pathology In Human PD Brains

Transmission Induced α-Syn Pathology Accelerates Disease Onset And Correlates With Earlier Death Compared To Non-Injected M83 Tg Mice

Pathways & Destinations Of Propagation & Transmission Of Injected Pathological α-Syn

Penn Medicine Udall Center for Parkinson's Research

New Model of PD Progression by Transmission of α-Syn Pathology

Does Transmission = Infectious Capability? For CJD, the answer is yes, but for PD as well as AD, ALS, FTLD, published studies argue against this based on the data from the use of postmortem human pituitary extracts to treat thousands of children with GH deficiency from 1958 to 1985 when this treatment was stopped after the appearance of the papers below. In our collaborative studies with the CDC, we find that there have been no similar reports of the transmission of PD, AD, ALS or FTLD to this cohort, a small number of whom developed CJD ~20 years after treatment.

Brown P, Gajdusek DC, Gibbs CJ Jr., Asher DM. Potential epidemic of Creutzfeldt-Jakob disease from human growth hormone therapy. N Engl J Med 1985; 313: 728–731.

Powell-Jackson J, Weller RO, Kennedy P, Preece MA, Whitcombe EM, Newsom-Davis J. Creutzfeldt-Jakob disease after administration of human growth hormone. Lancet 1985; ii: 244–246.

It Takes a Great Team!

CNDR α-SYN MODEL

TEAM

V. Kehm, C. Li, K.C. Luk, P. O'Brien, D.M. Riddle, A. Stieber, S.A. Tanik, L.A. Volpicelli-Daley, B. Zhang The entire CNDR Team

Virginia M-Y Lee

FORMER CNDR MEMBERS AND COLLABORATORS B.I. Giasson, E.B. Lee, Y. Lim, D.F. Meany ,T.P. Patel, J. Soper Supported by the NIH/NINDS Penn Udall Center, the Bellet Family, the Benaroya Family, the Keefer Family, the Picower Foundation, the Parkinson Council of Philadelphia and the Families of our Patients

