Profiling the neuroinflammatory response in AD — potential for personalized medicine and therapeutic modulation

> Donna M. Wilcock Ph.D. Sanders-Brown Center on Aging Department of Physiology University of Kentucky





# Microglial cells surround plaques and tangles



### The original view of inflammation in AD

#### An autotoxic loop



Adapted from McGeer and McGeer, Exp Gerentol 33:371-378

### Inflammation has a purpose



# We can identify types of neuroinflammation



# Determining the inflammatory state of the human Alzheimer's disease brain

- Many postmortem tissue have used late-stage AD brain samples.
- We hypothesized that there may be differences in the neuroinflammatory state as AD progresses.
- We obtained tissue samples from early AD, late AD and age-matched, non-demented controls.
- Gene expression levels of neuroinflammatory markers measured by qRT-PCR from frozen brain tissue frontal cortex and cerebellum.
- Serum analyzed for predictive markers of the brain neuroinflammatory state.
- Clinical histories of patients examined to determine common non-AD factors that account for differences in the neuroinflammatory states.

### Human AD tissue characteristics

| Group    | Age range<br>(yr) | MMSE          | ApoE4<br>status | Braak stage | PMI (hr)     |
|----------|-------------------|---------------|-----------------|-------------|--------------|
| Early AD | 77-100            | 20-24         | -/4 = 12        | 3-5         | 1.0-6.5      |
| N=23     | (mean = 87.2)     | (mean = 22.6) | 4/4 = 3         |             | (mean = 3.6) |
| Late AD  | 74-88             | 0-13          | -/4 = 6         | 6           | 1.75-11.0    |
| N= 16    | (mean 85.6)       | (mean 7.25)   | 4/4 = 4         |             | (mean =5.4)  |
| Control  | 77-96             | 28-30         | -/4 = 10        | 0-2         | 1.75-8.0     |
| N=37     | (mean = 84.3)     | (mean = 29.1) | 4/4 = 3         |             | (mean = 4.2) |

# Cluster analysis revealed two distinct populations in the early AD group



### Early AD brain is biased to either the M1 or M2a phenotype in the frontal cortex



# In the cerebellum the inflammatory polarization does not exist



# End-stage AD brain does not show the same heterogeneity observed in early stage



### Next step....

- Hypothesis: The polarization of the neuroinflammatory state of the early AD brain to either M1 or M2 will significantly influence response to therapy.
- Serum from our samples were run on the Myriad-RBM human inflammation MAP.
- Our goal was to identify serum biomarkers predictive of the brain neuroinflammatory state.

# Serum markers are predictive of brain neuroinflammatory state



# Cerebrovascular disease risk factors are present with an M2 polarization

- We retrieved the following history:
  - Congestive heart failure
  - Angina
  - Hypertension
  - Peripheral vascular disease
  - Atrial fibrillation
  - Coronary artery bypass graft
  - Angioplasty
- We added up the number of risk factors present and analyzed this based on the brain neuroinflammatory profile.
- We found that the M2 phenotype is associated with the increased presence of cerebrovascular disease risk factors.



# Can we modulate the inflammatory response and influence AD pathology?



### Study design

- 120 seven month old APP/PS1 mice were assigned to one of 4 treatment groups.
  - Saline.
  - Anti-Aβ antibody (6E10, A $\beta_{3-8}$ , IgG1)
  - IVIg (composed primarily of IgG1 and IgG2)
  - Mouse IgG (composed primarily of IgG1 and IgG2a).
- Intracranial injections were performed bilaterally in the frontal cortex and hippocampus.
- The right side was dissected for biochemistry and the left was fixed and processed for histology.



## A $\beta$ is reduced by all treatments but anti-A $\beta$ antibody shows a more rapid reduction



# A $\beta$ is reduced by all treatments but anti-A $\beta$ antibody shows a more rapid reduction



# Microglial activation is induced by all three antibody injections



# $\begin{array}{l} \mbox{Microglial activation peaks later with IVIg} \\ \mbox{than anti-} A\beta \mbox{ antibody} \end{array}$



## Neuroinflammatory phenotypes are modulated by antibody presence in the brain



### Summary and conclusions

- Neuroinflammatory profiles can be used to phenotype the inflammatory response in the brain.
- Early AD brain exhibits diverse neuroinflammatory phenotypes that will likely directly influence response to therapeutic interventions.
- M2 inflammatory phenotypes in the brain are associated with elevated cerebrovascular disease risk factors.
- IVIg, when administered intracranially, promotes an M2b phenotype that appears to precede the amyloid reductions.
- We hypothesize that "modulation" of the neuroinflammatory phenotype is a potential therapeutic approach for the treatment of Alzheimer's disease.

### Our working hypotheses

 Neuroinflammatory phenotypes can directly influence Alzheimer's disease pathology onset and progression.

 The co-morbidity of vascular dementia with Alzheimer's disease will require different therapeutic approaches than pure AD alone.

### Acknowledgements

- Wilcock laboratory
  - Holly Brothers PhD
  - Tiffany L. Sudduth
  - Erica Weekman
  - Kaitlyn Braun
  - Abigail Greenstein
- MRISC collaborators
  - David Powell PhD
  - Peter Hardy PhD

#### **Funding Sources**

- National Institutes of Health NINDS and NIA
- Alzheimer's Association
- University of Kentucky CCTS
- Baxter BioSciences

#### Sanders-Brown collaborators

- Elizabeth Head PhD
- Peter Nelson MD,PhD
  - Sonya Anderson
  - Ela Patel
- Fred Schmitt PhD
- Linda Van Eldik PhD
  Adam Bachstetter PhD

The human studies were funded by a pilot grant awarded by the UK-ADC and the UK-CCTS.

IVIg studies were funded by Baxter Biosciences and NINDS.