Estimating Cognitive Reserve via Decomposition of Memory Variance

> Bruce Reed & Dan Mungas University of California, Davis

Nothing to disclose

Measuring reserve

- Reserve is a theoretical construct that cannot be directly measured
- Typically, reserve is estimated by measuring something presumed to confer reserve.
- Example. We measure education and infer that the effects of education reflect reserve.
- However, education has broad effects. Associated with lower rates of hypertension, diabetes, obesity, heart disease, stroke, COPD, ...
- Other potential indicators of reserve (occupational complexity, cognitive activities) share this problem
- A direct measure of reserve is desirable

Can reserve be estimated more directly?

- "reserve has been proposed to account for the disjunction between the degree of ... pathology and its clinical manifestations" Stern 2009.
- Restated: reserve accounts for the difference between the expected effects of the degree of pathology present and observed cognitive function.
- $\mathbf{R} = \mathbf{C} \mathbf{E}(\mathbf{C} \mid \mathbf{P})$

Reserve = cognition – (expected value of cognition given pathology)

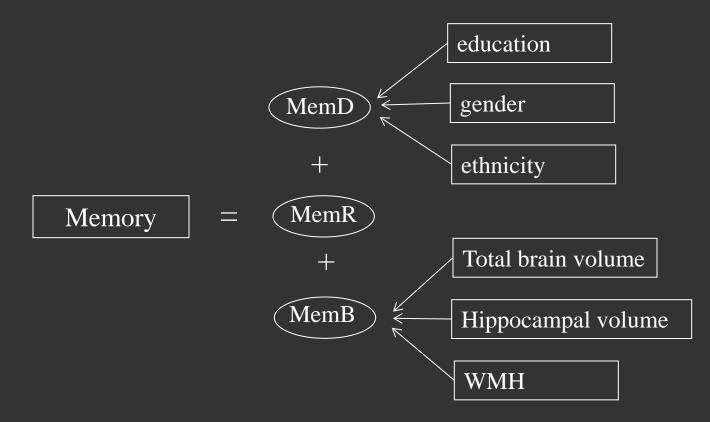
An operational model

Reserve

Brain Pathology (MRI volumes) Cognition (episodic memory)

-3-

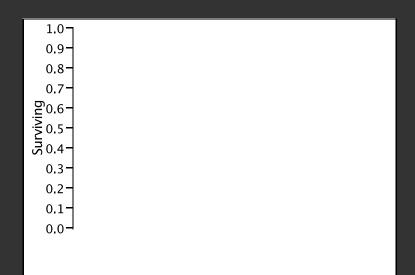
average memory, high residual memory


average memory, low residual memory Might this residual serve as a good estimate of reserve?

Not a pure measure: the residual term captures unmeasured systematic variance and measurement error.

"All models are wrong. Some are useful" George Box

Decomposing memory variance


- The demographic term captures variance related to factors that correlate with test scores but which are not likely part of reserve (e.g. gender)
- It includes effects of education. Thus, any effects of residual are independent of education

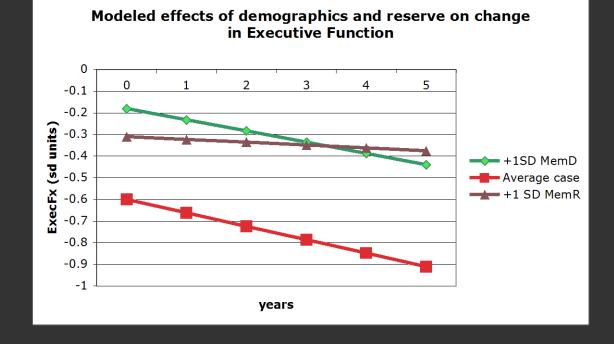
Testing residual memory as an estimate of reserve

- Hypotheses based on an adaptive model of cognitive reserve
 - 1. Higher reserve lowers the risk of conversion to dementia
 - 2. Higher reserve slows the rate of longitudinal cognitive decline
 - 3. The association between brain atrophy and longitudinal cognitive decline is stronger in persons with low reserve than in persons with high reserve
- Data from UC Davis Diversity Cohort
 - N = 305, ethnically diverse, wide range of education (M ~ 12 yrs, range 0 -20, 85% cognitively normal or MCI

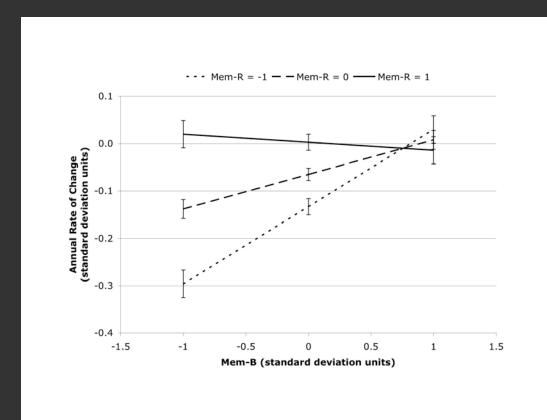
MemR modifies the risk of conversion to dementia

Memory Component	Relative Risk (confidence interval)		
Mem-D	1.09 (0.74 - 1.59)		
Mem-B	0.21 (0.13 - 0.36)		
Mem-R	0.35 (0.25 - 0.49)		

High Mem Res — Low Mem Res —

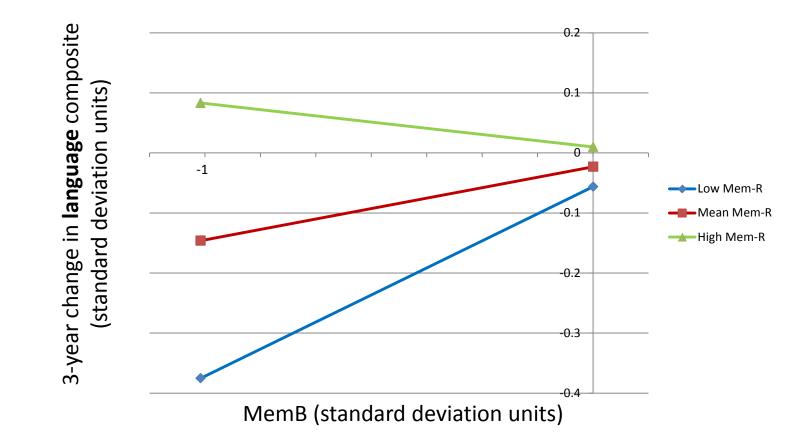

MemR modifies rate of longitudinal cognitive decline

Baseline Executive


Component	β	р
Mem-D	0.418	0.001
Mem-B	0.352	0.001
Mem-R	0.287	0.001

Change in Executive

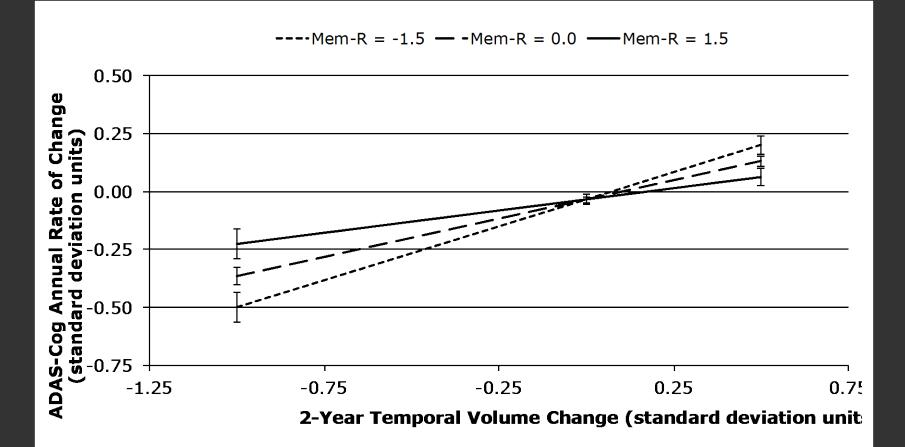
β	Coefficient	р
Mem-D	-0.010	ns
Mem-B	0.067	0.001
Mem-R	0.049	0.001


The association between brain atrophy and longitudinal cognitive decline is stronger in persons with low reserve (MemR) than in persons with high reserve (MemR)

Replication in WHICAP

- Zahodne et al.
- 704 non-demented participants. M age ~80, ethnically diverse, M education 11yrs.
- Memory: composite from SRT
- Cognitive Outcome: Language composite
 - Key findings
 - Good model fit
 - Higher MemR associated with
 - lower risk of dementia conversion
 - slower decline in language

WHICAP replication (N=704)


Worse brain status associated with greater 3 year decline in Language; Effect larger with low MemR, smaller with high MemR

L.B. Zahodne & Y. Stern

Extension to ADNI

- Longitudinal ADNI 1data
- 3-way decomposition
 - MemD defined by education and gender
 - MemB defined by normalized hippocampus, temporal lobe, ventrical, WMH
- Cognitive outcome = ADAS-Cog
- Modeled change in cognition in relation to change in temporal lobe volume
- Reserve model predicts greater reserve will result in less change in relation to increased pathology.

The rate of cognitive decline associated with progressive temporal lobe atrophy is modified by reserve

What builds reserve?

- Estimating reserve with the residual makes minimal assumptions about what builds reserve. Assuming MemR is an estimate of reserve, correlations with MemR are evidence that a factor contributes to reserve.
- No relationship to reserve:
 - Morphometric markers of early growth
 - Index of economic deprivation
- Associated with reserve independently of education
 - Childhood SES
 - Leisure cognitive activities in middle age and late life
 - Idea Density

Consistent with the reserve hypothesis, a residual memorybased estimate of reserve:

- Modifies the risk of conversion from MCI to dementia
- Modifies rates of decline in language and executive function
- Reduces the effect of baseline brain atrophy on subsequent cognitive decline
- Reduces the effect of longitudinal temporal lobe atrophy on decline in global cognition.

Conclusions

- Operationally estimating reserve as residual cognition is a useful approach
- Provides a direct, quantitative, individually-specific measure
- Can be used either as a predictor, to study reserve effects, or as a dependent measure in investigations of what determines reserve
- Also enables investigation of how reserve changes over time, and of "domain-specific" reserve
- Quantifying "how much" reserve there serves as a heuristic device; it challenges us to find the determinants of reserve and other factors that explain variability in the effects of pathology on cognitive performance

Acknowledgements

- UC Davis Alzheimer's Disease Center-- C. DeCarli (AG10129)
- Advanced Psychometric Methods in Cognitive Aging Research - D Mungas, PI (R13AG030995)
- Brain Pathologies, Reserve and Cognition - B. Reed, PI (R01 AG031563)
- Rush Memory and Aging Project D Bennett, PI (R01AG17917)
- Rush Religious Orders Study D Bennett, PI (P30AG10161, R01AG15819)
- Alzheimer's Disease Neuroimaging Initiative—M. Weiner PI (U01 AG024904).

- Dan Mungas
- Charles DeCarli
- Laurel Beckett
- Sarah Farias
- Vineeta Chand
- David Bennett
- Yaakov Stern
- Laura Zahodne
- Maritza Dowling
- Joshua Sonnen
- Michael Weiner and the ADNI investigators

Caveats

Approach depends on pathology being present and measured (not useful in cohorts with low prevalence of pathology)

Estimates are model and cohort dependent

- episodic memory the right cognitive measure?
- are multiple domains of reserve useful?

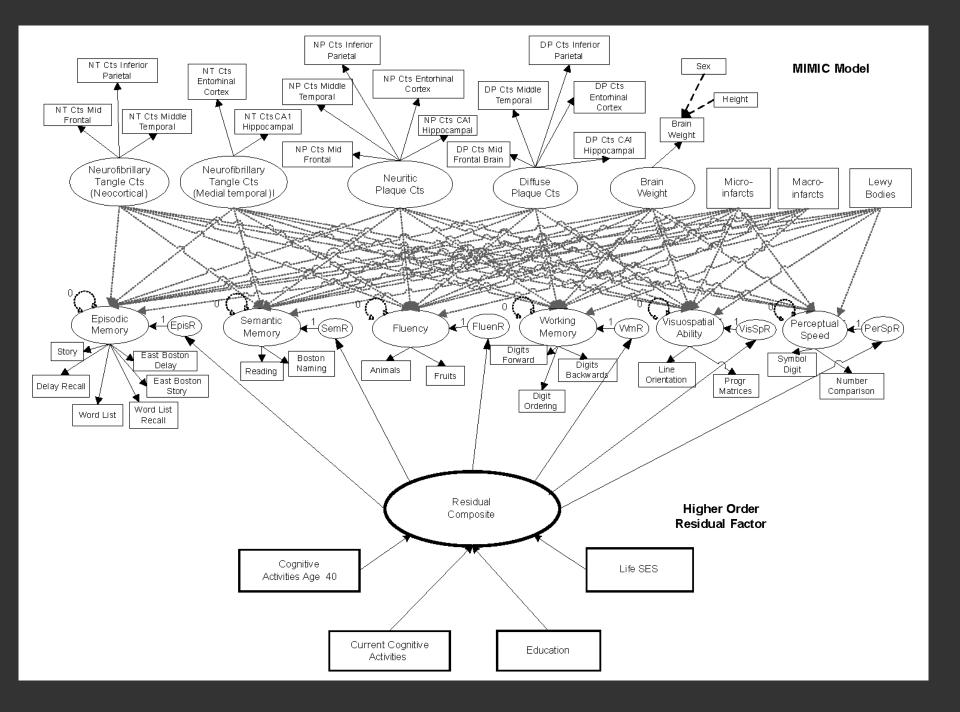
WHICAP replication (N=704)

Washington/Hamilton Heights Columbia Aging Project Community-based study in Northern Manhattan

	Mean	SD
Age	80	5.5
Education	11	4.8
Sex	67% Female	-
Race and ethnicity	31% Non-Hispanic White	-
	34% African American	
	35% Hispanic	
Testing Language	33% Spanish	-

WHICAP replication (N=704)

Higher MemR associated with:


- Lower likelihood of concomitant MCI diagnosis
- Lower reading ability
- Lower odds of dementia conversion
- Better concomitant language abilities
- Less decline in language abilities over time

	MemD	MemB	MemR
MCI (standardized probit coefficients)	-0.218**	-0.148**	-0.573**
Reading ability (β)	0.588**	0.014	0.156**
Dementia conversion (standardized log odds)	-0.381*	-0.577**	-0.709**
Baseline language composite (β)	0.250**	0.017	0.181*
Change in language composite (β)	0.650**	0.158**	0.370** Zahodne & Y S

L.B. Zahodne & Y. Stern

Rush replication

- 652 Neuropathology cases from MAP and ROS
- 17 cognitive tests, 19 neuropathology measures
- Created LVM for neuropathology, LVM for cognitive domains regressed 6 cognitive domains on the Npath measures resulting in 6 estimates of domain specific reserve.
- Created a second order, general reserve factor
- Examined association between general cognitive reserve and potential predictors of reserve
- Education; Leisure time cognitive activities; Childhood SES

Journal of the International Neuropsychological Society (2011), 17, 1–10. Copyright © INS. Published by Cambridge University Press, 2011. doi:10.1017/S1355617711000014

SPECIAL SERIES

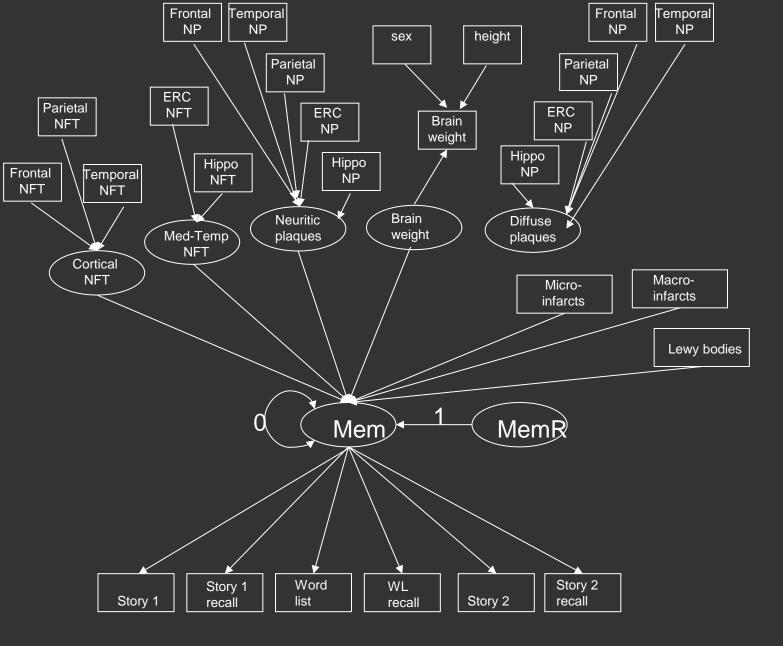
Cognitive Activities During Adulthood Are More Important than Education in Building Reserve

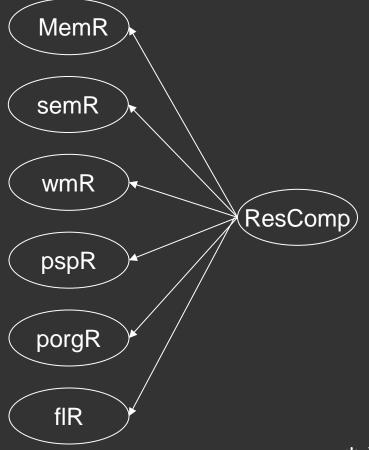
Bruce R. Reed,^{1,2} Maritza Dowling,³ Sarah Tomaszewski Farias,¹ Joshua Sonnen,⁴ Milton Strauss,⁵ Julie A. Schneider,⁶ David A. Bennett,⁶ AND Dan Mungas¹

Idea Density

- Linguistic measure of efficiency in communication: ideas/word
- Nun study reported higher idea density measured in youth associated with reduced risk of dementia decades later

- We measured idea density using spoken language in 137 older adults.
- Idea Density appears to be associated with reserve in ways not wholly mediated by education

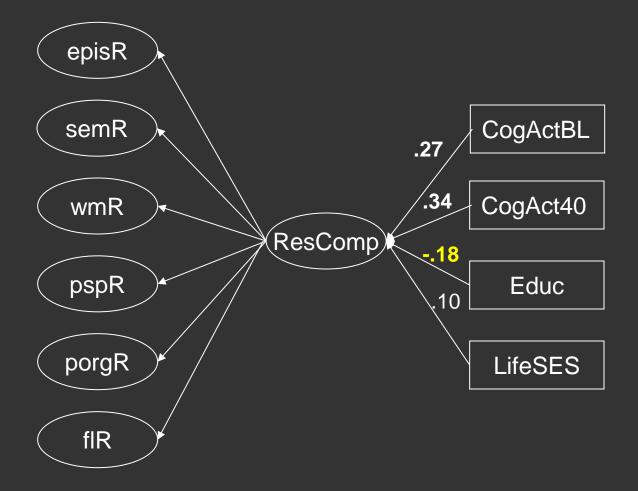

r = .28, p < .001


	Normal (n=162)	MCI (n=100)	Demented (n=43)	All (n=305)
Gender				
N (%) Female	111 (69)	57 (57)	25 (58)	193 (63)
Education (years)				
Mean (S.D.)	12.8 (4.4)	13.1 (4.6)	11.3 (4.6)	12.7 (4.5)
Age (years)***				
Mean (S.D.)	73.1 (7.1)	75.1 (6.6)	78.1 (7.4)	74.5 (7.2)
Ethnicity*				
N (%) African Am.	58 (36)	33 (33)	10 (23)	101 (33)
N (%) Hispanic	49 (30)	17 (17)	12 (28)	78 (26)
N (%) Caucasian	55 (34)	50 (50)	21 (49)	126 (41)
Follow-Up Time Mean Years (S.D.)**	3.5 (1.3)	3.2 (1.4)	2.8 (1.4)	3.0 (1.3)
Number of Evaluations				
N(%) 2 Evals	28 (17)	24 (24)	13 (30)	65 (21)
N(%) 3 Evals	41 (25)	29 (29)	12 (28)	82 (27)
N(%) 4 Evals	46 (29)	17 (17)	10 (23)	73 (24)
N(%)≥5 Evals	47 (29)	30 (30)	8 (19)	85 (28)

UC Davis Alzheimer's

Zahodne

	MemD	MemB	MemR
Reading ability (β)	0.588**	0.014	0.156**
Dementia conversion	-0.381*	-0.577**	-0.709**
(standardized log odds)			
Baseline language composite (β)	0.250**	0.017	0.181*
Change in language composite (β)	0.650**	0.158**	0.370**



• Model estimated 6 residual terms, 1 for each cognitive domain

• Evaluation of covariance structure showed a single, second order factor accounted for variance in the 6 domains very well

* Each residual estimated simultaneously

