

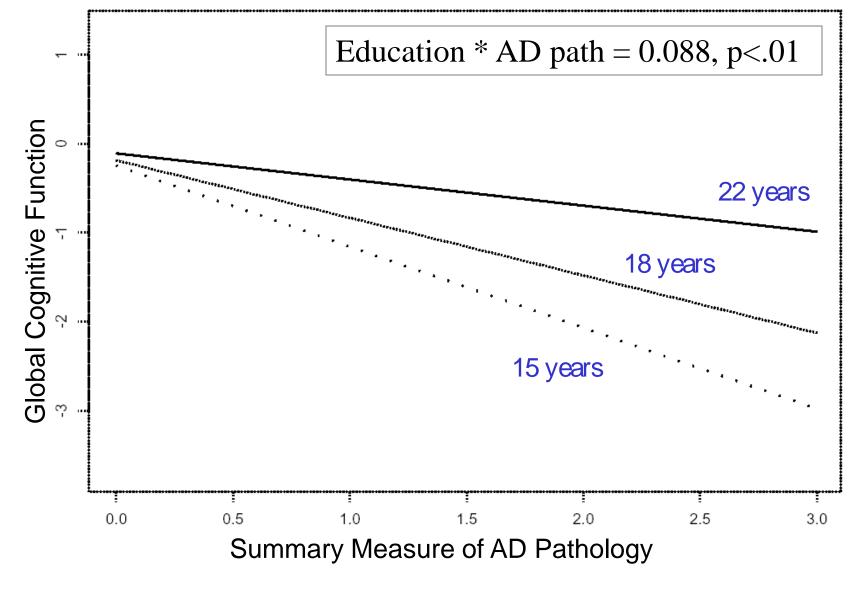
Conceptual Models of Cognitive Reserve

Yaakov Stern Cognitive Neuroscience Division, Department of Neurology Columbia University

Education and rCBF

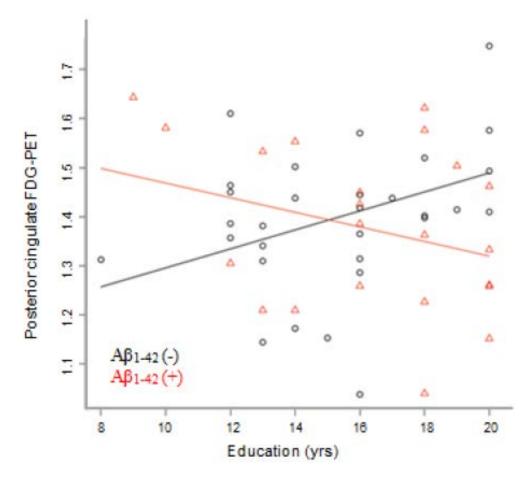
Controlling for clinical disease severity, there is an inverse relationship between education and a functional imaging proxy for AD pathology

Stern et al, Ann Neurol 1992


Education and rCBF Stepwise multiple regression

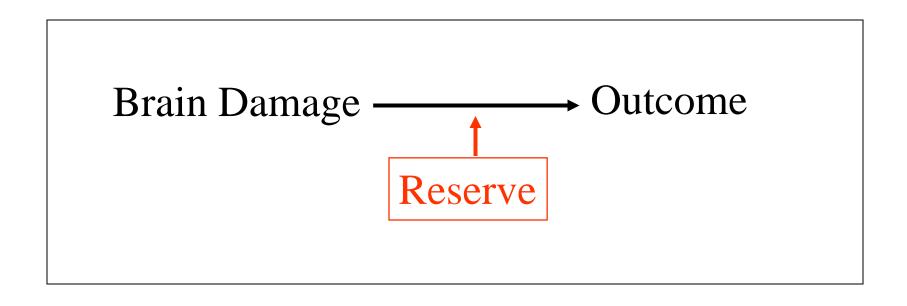
Predictors of P3 detector flow: mMMS, BDRS, age, age at onset, duration .190 + education .304

Predictors of PI Index flow: R squared mMMS, BDRS, age, age at onset, duration .187 + education .251


Stern et al, Ann Neurol 1992

Interaction of AD Pathology and Education

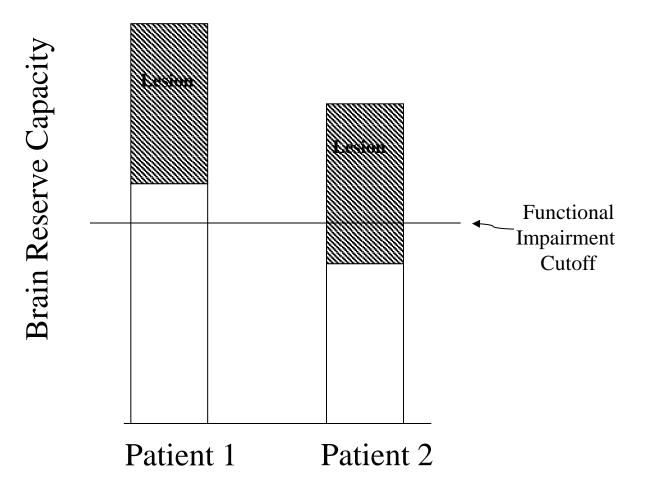
Bennett DA et al, Neurology 2003


FDG PET in non-demented elders with low and high Aβ1-42 levels

Higher education
was associated
with *lower* FDGPET in the Aβ142 (+) group, but
with *higher* FDGPET in the Aβ142 (-) group.

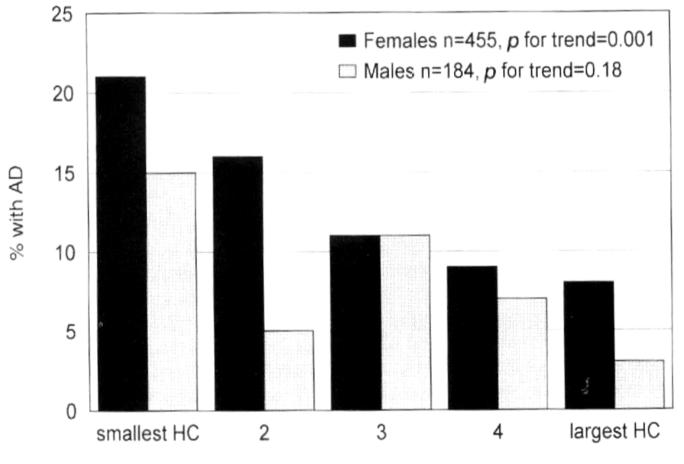
Ewers et al, Neurology, in press

What is Reserve?



Reserve may explain the disjunction between the degree of brain damage and the clinical manifestation of that damage.

Mechanisms underlying reserve

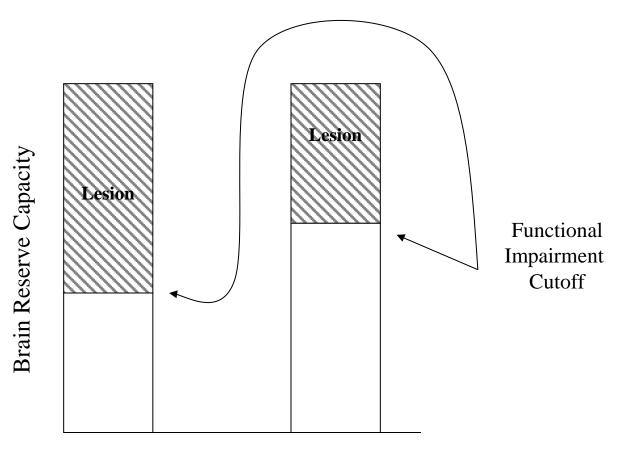

- Brain reserve:
 - More neurons/synapses to lose
 - Anatomic changes on the basis of experience
- Cognitive Reserve:
 - Resilience/plasticity of cognitive networks in the face of disruption

Passive, Threshold Model

Satz, Neuropsychology 1993

Brain Reserve: Association Between Head Circumference and Alzheimer's Disease

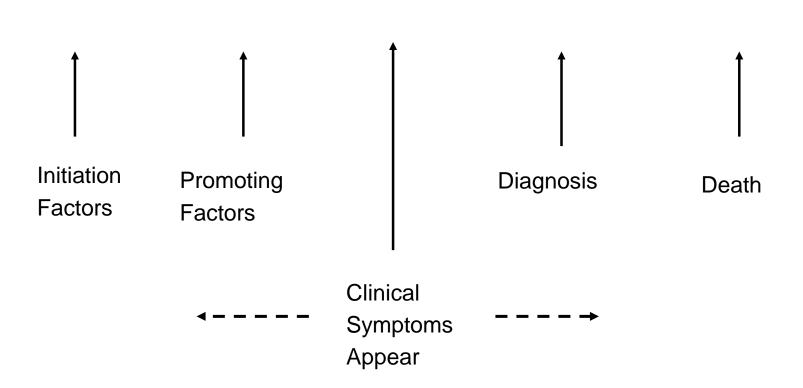
Schofield, et al, 1997


Brain Reserve is Not So Simple

The literature suggests that exercise and environmental stimulation can activate brain plasticity mechanisms and remodel neuronal circuitry in the brain.

They can increase:

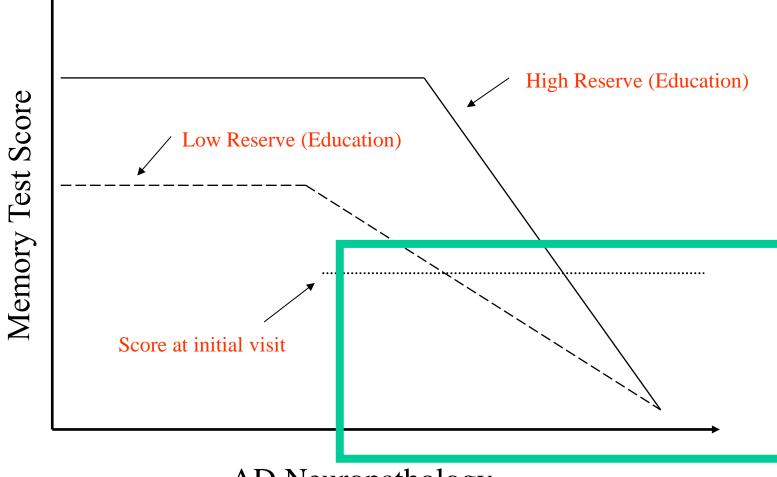
- Vascularization (exercise)
- Neurogenesis in the dentate
- Neuronal survival and resistance to brain insult
- Brain-derived neurotrophic factor (BDNF) -- benefits brain plasticity processes
- Serotonin, dopamine, IGF-1


Active Model (e.g. Cognitive Reserve)

Patient 1 Patient 2

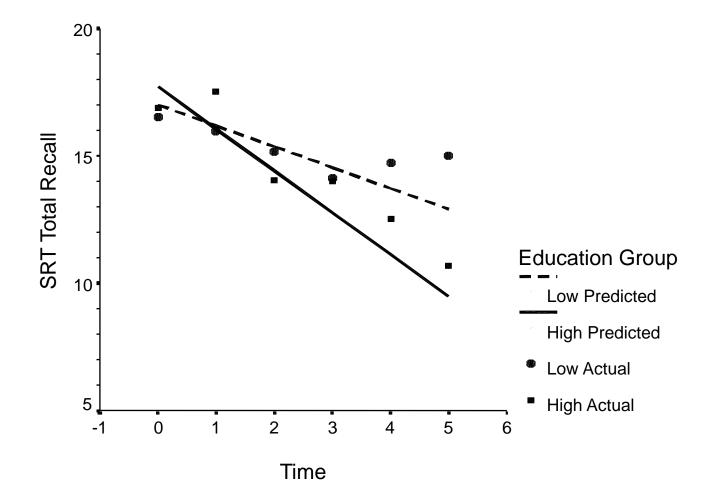
Stern, JCEN 2002

Advancing AD Pathology

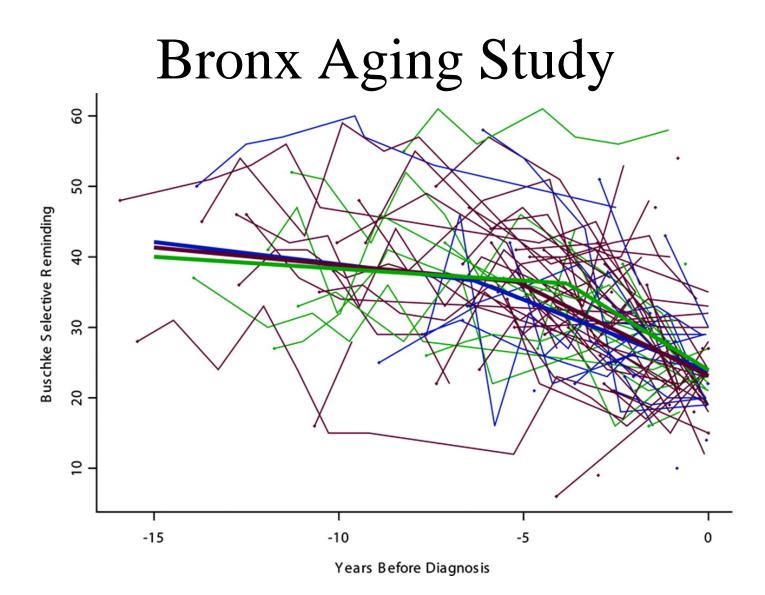

Incident Dementia in The Washington Heights Study

Group	Ν	Incident Cases	Relative Risk	95% CI	
Low Education	264	69	2.02	1.3-3.1	
High Education	318	37	1		
Low Occupation	327	71	2.25	1.3-3.8	
High Occupation	201	17	1		

Stern et al, JAMA 1994


Study	High activity	Low activity	OR	Weight	OR
(first-named author)	(n/N)	(n/N)	(95% Cl random)	(%)	(95% Cl random)
Education					
Hebert (1992)	34/362	42/149	_	2.6	0.26 (0.16-0.44)
Paykel (1994)	13/376	36/783	e	1.8	0.74 (0.39-1.42)
Bickel (1994)	7/84	27/230	B	1.1	0.68 (0.29-1.63)
Stem (1994)	37/329	69/264	_ e	3.1	0.36 (0.23-0.56)
Cobb (1995)	138/2033	37/267	_ _	3.5	0.45 (0.31-0.67)
Person (1996)	8/86	30/236	e	1.2	0.70 (0.31-1.60)
Schmand (1997)	59/949	93/1114		4.1	0.73 (0.52-1.02)
Evans (1997)	24/312	70/326	_	2.7	0.30 (0.19-0.50)
Elias (2000)	59/604	47/441	_ _ ₽	3-4	0.91 (0.61-1.36)
Ott (1999)	32/2386	68/2601	_ 	3.2	0.51 (0.33-0.77)
Ganguli (2000)	87/736	112/562	_ _	4.5	0.54 (0.40-0.73)
Scarmeas (2001)	82/866	130/922		4.6	0.64 (0.48-0.85)
Qiu (2001)	37/536	110/760	_ 	3.5	0.44 (0.30-0.65)
Fitzpatrick (2004)	323/2598	154/764	_ _	5.7	0.56 (0.46-0.69)
Tuokko (2003)	63/289	79/232	_	3.5	0.54 (0.37-0.80)
Occupation	001200		_	22	0.2.1(0.2.7.0.000)
Bickel (1994)	10/153	24/159		1.4	0.39 (0.18-0.85)
Stem (1994)	17/201	71/327		2.2	0.33 (0.19-0.58)
Paykel (1994)	20/454	28/683		2.1	1.08 (0.60-1.94)
Evans (1997)	22/245	50/284		2.4	0.46 (0.27-0.79)
Schmand (1997)	29/682	111/1206		3.2	0.44 (0.29-0.67)
Schmand (1997)	36/668	110/1173		3.5	0.55 (0.37-0.81)
Jorm (1998)	7/178	6/86		0.7	0.55 (0.18-1.68)
Elias (2000)	46/467	63/607		3-4	0.94 (0.63–1.41)
Scarmeas (2001)	37/425	126/1013		3-6	0.94 (0.03–1.41)
Helmer (2001)	21/281	372/2669		2.9	0.50 (0.32-0.79)
Anttila (2004)	21/652	27/420		2.9	0.48 (0.27-0.87)
Karp (2004)	52/574	49/339	_ _	3.3	0.48 (0.27-0.87)
• • •	52/5/4	49/339		5.5	0.33 (0.33-0.83)
Premorbid IQ	60/1004	00/070			0.00.00.00.000
Schmand (1997)	62/1084	90/979		4.1	0.60 (0.43-0.84)
Elias (2000)	23/271	40/271		2.2	0.54 (0.31-0.92)
Leisure activity					
Fratiglioni (2000)	129/964	47/239		3.7	0.63 (0.44-0.91)
Scarmeas (2001)	77/891	130/881		4.5	0.55 (0.41-0.74)
Wang (2002)	37/338	86/394		3.3	0.44 (0.29-0.67)
Verghese (2003)	84/382	40/87		2.2	0.33 (0.20-0.54)
Total (95% Cl)	1733/21456	2574/21468	•	100-0	0.54 (0.49-0.59)
Test for heterogeneity χ^2	=55.62, df=32, p=0	-006			
Test for overall effect $z =$	-12·30, p<0·00001				
		0.1	0.2 1 5	10	
		Fa	vours protective Favor	urs risk factor	

Valenzuela & Sachdev, Psychological Medicine, 2005



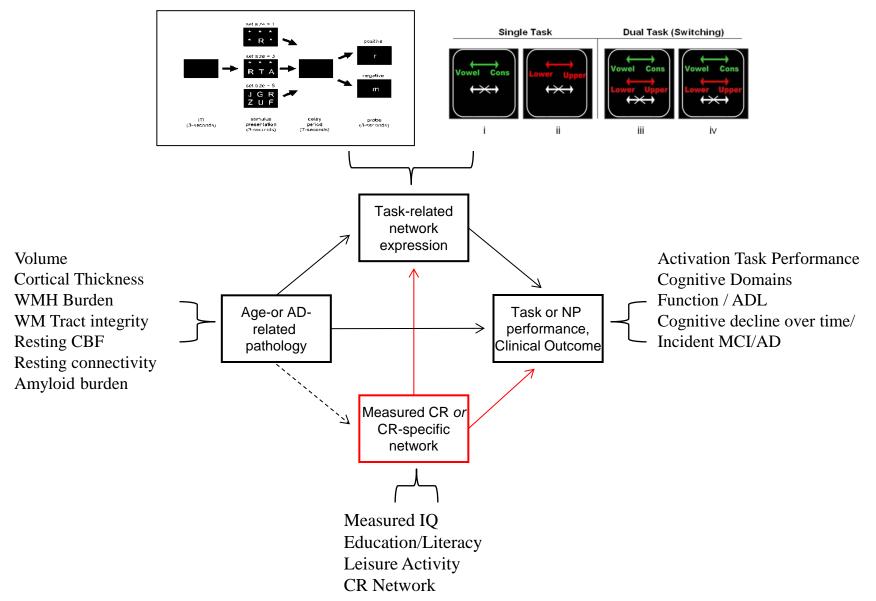
AD Neuropathology

More rapid memory decline in AD patients with higher educational attainment

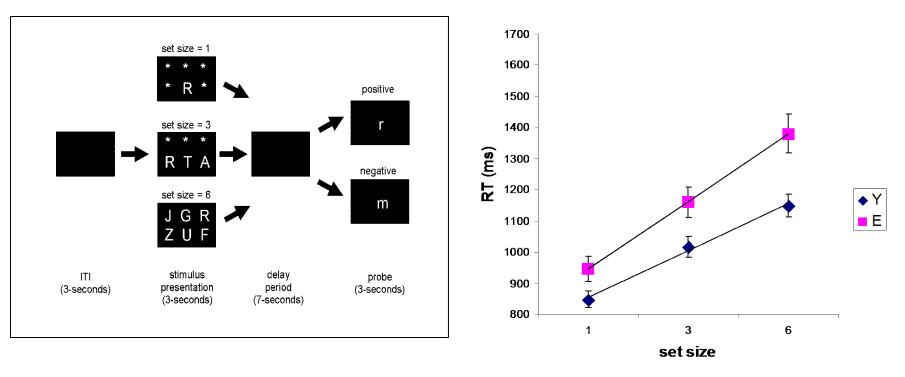
Stern et al Neurology 1999;53:1942-1957

Blue indicates less than 7 years education (32 Ss), red indicates 8 to 11 years (64 Ss), and green indicates 12 or more years education (21 Ss).

Hall, C. B. et al. Neurology 2007

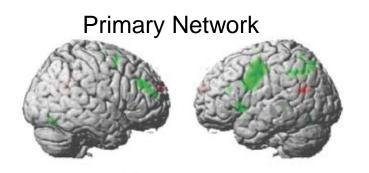

Cognitive Reserve, Aging and AD

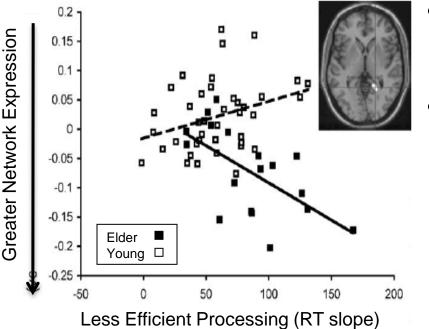
- Two individuals who appear the same clinically, whether demented of non-demented, can have widely divergent levels of underlying age-related neural changes or AD pathology.
- Thus, the clinical diagnosis of normal aging, MCI or AD may be accompanied by very minimal pathology or more than enough to meet pathological criteria for AD.
- Measuring CR therefore becomes an important component of diagnosing and characterizing aging and dementia.


Using Functional Imaging to Study CR

- Goal: To understand how cognitive reserve may be neurally implemented.
 - Emphasis on networks mediating CR, not task performance
- Working hypothesis: CR operates through individual differences in how tasks are processed in the brain.
- Basic approach: Challenge participants with a demanding task and investigate differences in task-related activation between individuals with high and low CR.
- Assumption: Because CR modulates most aspects of cognitive performance in the presence of pathology, this approach should work with most demanding tasks.

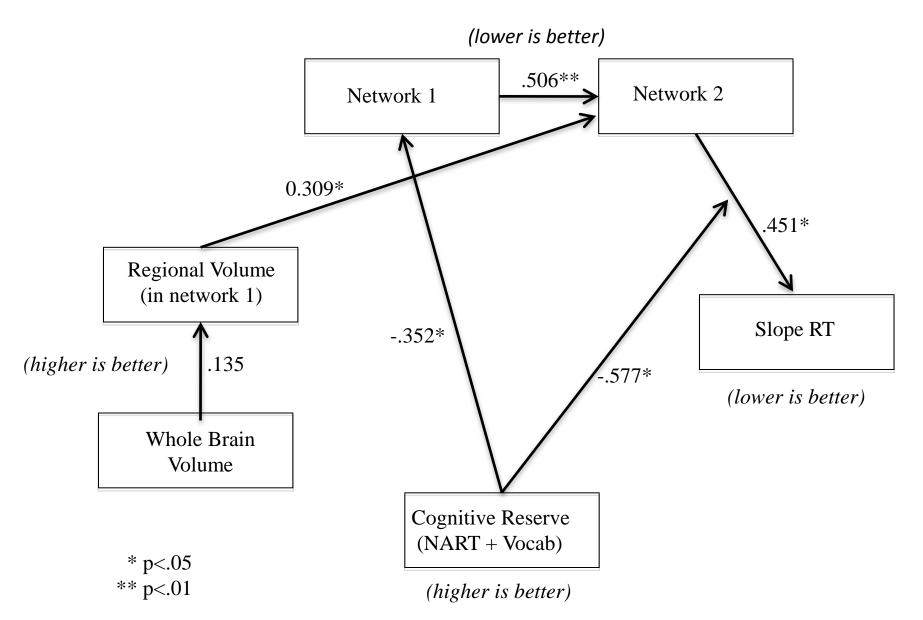
Current Study of the Neural Implementation of Cognitive Reserve


Modified Sternberg Task


"Load-related" activation: the change in activation as set size increases

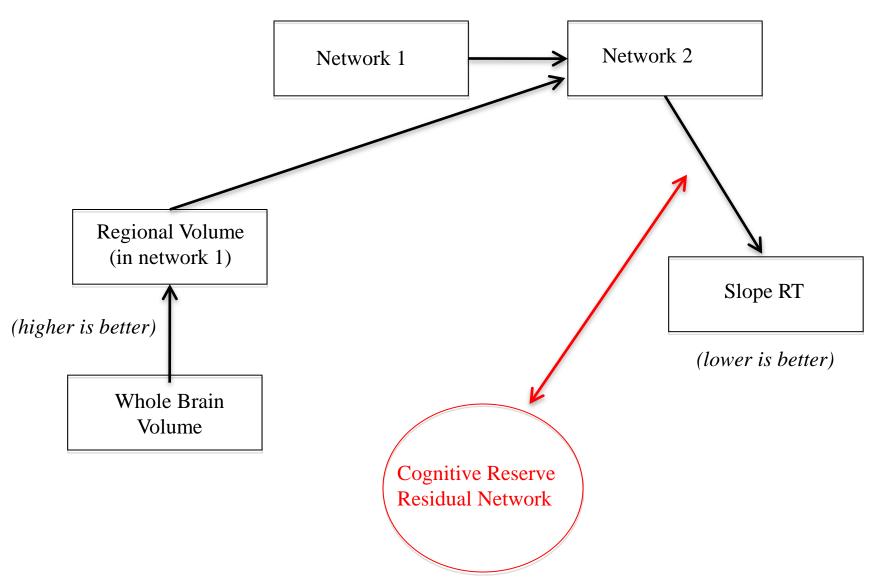
We focus on load-related activation because CR might be more related to the coping with increases in task demand than to taskspecific features.

Load-dependent Activation During Retention


Secondary Network

- Two patterns were expressed during retention
- The first pattern was expressed by young and old.
- The second pattern was expressed primarily by the elders
- Greater expression of pattern 2 was associated with poorer performance by the elders
- When there was brain atrophy in left SMA in pattern 1, pattern 2 expression increased, suggesting pattern 2 maintains function when pattern 1 is damaged

Zarahn et al., Neurobiol Aging 2007 Steffener at al., Brain Imaging and Behavior 2009


Path Analysis Using Scheme for Studying CR

Steffener at al., Brain Imaging & Behavior, 2010

There must be a CR Network that is independent of observed task-related activation

(lower is better)

Conclusions

- Epidemiologic and imaging evidence support the concept of cognitive reserve
- Reserve is malleable: it is influenced by aspects of experience in every stage of life
- Imaging studies can help us understand the neural implementation of cognitive reserve
- The concept of cognitive reserve is applicable to a wide range of conditions that impact on brain function at all ages
- Influencing cognitive reserve may delay or reverse the effects of aging or brain pathology