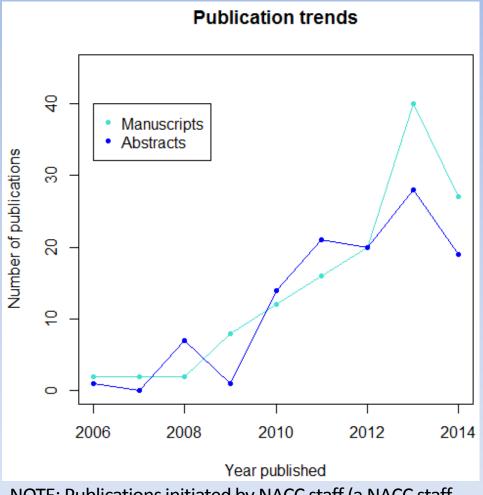
Research using NACC Data

Lilah Besser

Overview

- Research to date
- Recently published examples
 - ADC and non-ADC investigators
 - NACC researchers
- Lilah Besser's work using NACC data
 - "Mild cognitive impairment among Parkinson's disease subjects in the Uniform Data Set"
 - "Late life systolic blood pressure, body mass index, and heart rate, and Alzheimer's neuropathology among those without dementia before autopsy"

Research to Date


Frequency of NACC data requests

Number of requests	Year					
by request type	2009	2010	2011	2012	2013	2014
Proposals	26	30	73	54	58	59
All data files*	55	85	217	174	204	162
Table requests*	39	106	133	85	51	32

*Includes updating files with most recent data, adding variables, other adjustments, etc.

Manuscripts and abstracts

NOTE: Publications initiated by NACC staff (a NACC staff member is the first author) have been excluded.

Research proposals using NACC data Past trends

- rate of clinical progression and cognitive decline
- assessment of clinical criteria and guidelines
- neuropsychological test norms
- neuropsychiatric symptoms
- cross-sectional analyses
- dementia

Research proposals using NACC data Recent topics

- GWAS and genetic studies
- neuropsychological test composite scores
- vascular risk factors and pathology
- FTD syndromes
- longitudinal clinical-pathological correlation studies
- feasibility studies and sample size estimations
- preclinical Alzheimer's disease and MCI

Recent examples using NACC data ADC and non-ADC researchers

Toledo et al. (2013). *Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Center.* Brain 136(9): 2697-2706.

- CVD is a common co-pathology
- It more frequently occurs with AD than other neuropathologies
- Presence of CVD decreases threshold needed to have dementia symptoms
- Treating CVD can help delay onset of dementia

Recent examples using NACC data ADC and non-ADC researchers

Altmann et al. (2014). *Sex Modifies the APOE-Related Risk of Developing Alzheimer's Disease.* Ann Neurol 75(4): 563-573.

- NACC data: replicated findings that APOE e4 confers greater risk for AD for women than for men.
- ADNI data : In MCI, women with APOE e4 had higher levels of CSF total tau than men.

Recent examples using NACC data ADC and non-ADC researchers

Nelson et al (2014). *ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology.* Acta Neuropathol 127(6): 825-843.

- ABCC9 gene associated with hippocampal sclerosis
- NACC subjects using type of diabetes drug (sulfonylureas) known to modify ABCC9 protein function, were more likely to develop hippocampal sclerosis.

Recent examples using NACC data NACC researchers

- Gill et al, Alzheimers Dement. 2013; 9(5 Suppl); S63-71.
 - "Differences in rate of functional decline across three dementia types"
- Besser et al, ADAD 2014; 28(1): 36-43.
 - "Body Mass Index, Weight Change, and Clinical Progression in Mild Cognitive Impairment and Alzheimer Disease"
- Monsell et al, Neurology, 2014; 83(5):434-40.
 - "Neuropsychological changes in asymptomatic persons with Alzheimer disease neuropathology"

Lilah Besser's Project #1: MCI among Parkinson's disease subjects in the UDS

MCI among Parkinson's disease subjects in the UDS

Besser, L; Monsell, S; Heller, K; Hawes, S; Mock, C; Zhou, A; Weintraub, S; Litvan, I; Kukull, W.

Aim 1: To compare demographics, clinical characteristics, and neuropsychological test scores between MCI-PD subjects and those with the most common MCI subtype, MCI due to Alzheimer's disease (MCI-AD).

Diagnosis groups	Mild cognitive impairment (MCI) definition
MCI-PD	MCI met Petersen criteria — initial UDS visit
(PD with MCI by	PD diagnosis — initial UDS visit
Petersen criteria)	Motor decline was first symptom
	No Alzheimer's disease (AD) — initial UDS visit
MCI-AD	MCI met Petersen criteria — initial UDS visit
(MCI due to AD)	Primary, probable AD dementia — UDS follow-up
	No PD/dementia with Lewy bodies (DLB) – any visit

Aim 1 Methods

- UDS data from 16 Centers with MCI-PD subjects
- Unadjusted analysis comparing demographic and clinical characteristics
- Difference in mean neuropsychological test scores
 - 11 linear and logistic regression models
 - Bonferroni correction for multiple comparison, p<.0045
 - Covariates: age, sex, education, years since cognitive decline onset, and depression

MCI-PD subjects in the UDS

- n = 136
- 54% amnestic
- 84% affected in multiple domains

Demographic and clinical differences in MCI-PD and MCI-AD

Characteristic	MCI-PD (n=136)	MCI-AD (n=627)
Mean age at initial UDS visit (years)	69.9	75.4
Male	75%	47%
Depression	46%	30%
Visual or auditory hallucinations	23%	1%
REM sleep behavior disorder	19%	<1%
Anticholinergics	4%	1%
Amantadine	16%	<1%
Other dopaminergics	91%	1%
Antipsychotics	10%	<1%
Depression medication	46%	23%

All characteristics reported above were significantly different (p<.05) between the MCI-PD and MCI-AD group; Education, race, and CDR sum of boxes score were not significantly different between the two groups.

Adjusted differences in test scores comparing MCI-PD and MCI-AD

Neuropsychological test	Score range	Estimate	95% CI
MMSE pentagon correct	0, 1	OR: 0.50	0.26, 0.93
Logical Memory Immediate	0-25	Beta: 2.76*	1.79, 3.73
Logical Memory Delayed	0-25	Beta: 4.10*	3.33, 4.86
Digit Span Forward length	0-8	Beta: 0.24	-0.01, 0.49
Digit Span Backward length	0-7	Beta: 0.06	-0.38, 0.49
Animals	0-77	Beta: 0.84	-0.51, 2.18
Vegetables	0-77	Beta: 1.16*	0.51, 1.80
Boston Naming Test	0-30	Beta: 0.63	0.06, 1.21
Trail Making Test A	0-150	Beta: 11.18*	5.02, 17.34
Trail Making Test B	0-300	Beta: 37.49*	20.12, 54.87
WAIS-R Digit Symbol	0-93	Beta: -2.41	-4.53, -0.29

OR = odds ratio; 11 separate logistic or linear regression models (using GEE), all models adjusted for age at initial visit, sex, education, years since cognitive decline onset, and depression. * p < 0.0045 (Bonferroni correction)

Aim 2

• To estimate and describe PD subjects in UDS who meet/do not meet Level 1 PD-MCI criteria proposed by the Movement Disorders Society (MDS, 2012).

Diagnosis groups	Mild cognitive impairment (MCI) definition
MCI-PD	MCI met Petersen criteria — initial UDS visit
(PD with MCI by	PD diagnosis at initial UDS visit
Petersen criteria)	Motor decline was first symptom
	No AD at initial UDS visit
PD-MCI (PD with MCI by MDS criteria)	MCI met MDS Level 1 criteria (≥2 neuropsychological tests 1SD below norm) — initial UDS visit PD diagnosis at initial UDS visit Motor decline was first symptom No AD at initial UDS visit

Subjects meeting MDS PD-MCI Criteria

- 82% of MCI-PD subjects would be classified as PD-MCI according to new MDS Level 1 criteria
- Subjects who did NOT meet Level 1 criteria:
 - Better scores on many neuropsych tests (9%)
 - No neuropsychological test battery (9%)

Next steps

- Consider ways of addressing how motor symptoms may have affected our findings.
- Compare longitudinal change in neuropsychological test scores in MCI-PD and MCI-AD subjects.

Lilah Besser's Project #2: Blood pressure, body mass index, and heart rate, and AD neuropathology among those without dementia

Blood pressure, body mass index, and heart rate, and AD neuropathology among those without dementia Besser; Ramirez-Gomez; Heller; Hawes; Zhou; Chui; Schneider; Kukull

 Aim: To examine, among subjects without dementia before death, whether average late-life body mass index (BMI), systolic blood pressure (SBP), and heart rate (HR) are associated with AD neuropathology at autopsy.

Diagnosis groups	Definition
Normal cognition (NC)	Clinician diagnosis of NC at last UDS visit
N=204	before death
Mild cognitive	Clinician diagnosis of MCI at last UDS visit
impairment (MCI)	before death
N=168	

Eligibility criteria

- Restricted to:
 - UDS subjects with autopsy data
 - 60 years or older at time of death
 - Two or more UDS visits before death
 - At least one visit within 3 years of death
 - No missing data on exposures (BMI, SBP, HR)

Exposures and Outcome

- Exposures: calculated over two or more UDS visits
 - Average systolic blood pressure (mmHg)
 - Average body mass index (kg/m²)
 - Average heart rate (bpm)
- Outcome: AD neuropathology at autopsy
 - AD neuropath+
 - Braak stage III-IV, and
 - Moderate to frequent neuritic plaques
 - AD neuropath-
 - Braak stage 0-II, and
 - No or sparse neuritic plaques

Methods

- Compare demographic, clinical, neuropathology characteristics in the AD neuropath+ and AD neuropath- groups
 - Separately by diagnosis group (NC, MCI)
- Unadjusted and adjusted logistic regression models (GEE accounting for Center clustering)
 - Examined association between continuous independent variables (SBP, BMI, and HR) and AD neuropath

Characteristics of NC subjects

Characteristic of Normal Cognition subjects	AD neuropath+	AD neuropath-
Sample size	N = 36	N = 168
Mean age	89 years	87 years
Mean number of UDS visits	3.6 visits	3.9 visits
Mean time between last UDS visit and autopsy	1.0 years	0.9 years
Global CDR % with CDR = 0.0 % with CDR = 0.5	80.6% 19.4%	94.0% 6.0%
% reported smoking	33.3%	53.6%
% APOE e4 carrier	28.1%	11.1%
% with cerebral amyloid angiopathy NP	35.3%	8.4%

Characteristics that are bolded were significantly different (p<.05); Other characteristics that were examined and were not significantly different in AD neuropath + and - groups: education; race; sex; history of hypertension, diabetes, cardiovascular disease, stroke, hypercholesterolemia, thyroid disease, atrial fibrillation, pacemaker; antihypertensive and anti-lipid medication use; cerebrovascular, FTLD, Lewy body disease, and hippocampal sclerosis neuropathology at autopsy

Characteristics of MCI subjects

Characteristic of MCI subjects	AD neuropath+	AD neuropath-
Sample size	n = 65	n = 103
Mean age (years)	88 years	88 years
Mean number of UDS visits	3.8 visits	4.0 visits
Mean time between last UDS visit and autopsy	1.0 years	0.7 years
% reporting cardiovascular disease	38.5%	58.3%
% APOE e4 carrier	34.5%	16.3%
% with cerebral amyloid angiopathy NP	29.0%	7.8%

Bolded characteristics were significantly different (p<.05); Other characteristics that were not significantly different in AD neuropath + and - groups: education; race; sex; history of hypertension, diabetes, stroke, hypercholesterolemia, thyroid disease, atrial fibrillation, pacemaker, smoking; antihypertensive and anti-lipid medication use; cerebrovascular, FTLD, Lewy body disease, and hippocampal sclerosis neuropathology at autopsy

Vitals among NC and MCI subjects

Characteristic (averaged over ≥2 UDS visits)	NC AD neuropath+	NC AD neuropath-
Mean (SD) systolic BP (mmHg)	133.3 (18.9)	131.3 (17.3)
Mean (SD) body mass index (kg/m ²)	24.3 (4.1)*	26.8 (5.7)*
Mean (SD) heart rate (bpm)	69.3 (7.4)	71.3 (9.8)

Characteristic (averaged over ≥2 UDS visits)	MCI AD neuropath+	MCI AD neuropath-
Mean (SD) systolic BP (mmHg)	131.5 (13.7)	132.7 (14.3)
Mean (SD) body mass index (kg/m ²)	25.2 (4.4)	25.5 (4.2)
Mean (SD) heart rate (bpm)	73.7 (9.5)*	69.4 (7.3)*

BP: blood pressure; NC: Normal cognition * P < 0.05

Final multivariable model results

Characteristic	Model 1: NC OR (95% Cl)	Model 2: MCI OR (95% CI)
Systolic BP (mmHg)	1.01 (0.98-1.03)	0.99 (0.97-1.02)
Body mass index (kg/m ²)	0.90 (0.82-0.99)	0.98 (0.89-1.09)
Heart rate (bpm)	0.97 (0.93-1.02)	1.07 (1.04-1.11)

BP=blood pressure; NC=Normal cognition; Covariates: death age, sex, education, number of UDS visits, reported diabetes, hypercholesterolemia, or atrial fibrillation; past/present anti-hypertensive use, time between last UDS visit and autopsy

Compared to NC subjects with BMI of 18.5, those with BMI of 24.9 have 50% decreased odds of AD neuropath (OR: 0.50, 95% CI: 0.27-0.93).

Compared to MCI subjects with a heart rate of 70, those with heart rate of 75 have 42% increased odds of AD neuropath (OR: 1.42, 95% CI: 1.19-1.70).

Main findings

- Systolic blood pressure:
 - No association with AD neuropath in NC or MCI
- Lower body mass index:
 - Seems to be a clinical indicator for underlying AD neuropath in NC but not MCI
 - Published research consistent with our findings, but no known studies focused on those with NC or MCI
- Higher heart rate:
 - Potentially a novel indicator of underlying AD neuropath in MCI but not NC

Conclusions

- NACC data:
 - Increased use by ADC and non-ADC investigators
 - Requested by investigators in 17 countries
 - Focus of the requests parallel dementia research trends
 - High profile studies using NACC data
 - NACC research scientists heavily use the data
 - We are able to advise others about the strengths and pitfalls of the data
- Lilah Besser's research:
 - Work-in-progress
 - Welcome feedback

