ADNI and DIAN Neuropathology Core

Update 10/10/2014

Nigel Cairns, PhD, FRCPath

Knight ADRC Neuropathology Core Leader

ADNI and DIAN Longitudinal Observational Studies

- 1. The Alzheimer Disease Neuroimaging Initiative (ADNI) (http://www.adni-info.org/) was established to determine the relationships among the clinical, cognitive, imaging, genetic, and biochemical biomarker characteristics of sporadic, predominantly late-onset, Alzheimer disease (LOAD).
- 2. A complementary longitudinal observational study, the Dominantly Inherited Alzheimer Network (DIAN) focuses on the rarer, mainly early-onset, autosomal dominant AD (ADAD) (http://dian-info.org/) with known gene defects.
- 3. Both ADNI (U01 AG024904) and DIAN (U01 AG032438) are informing the neuroscience of AD, identifying diagnostic and prognostic markers, identifying outcome measures which can be used in clinical trials, and are helping to develop the most effective clinical trial protocols.
- 4. Both projects are funded by the National Institute of Aging of the National Institutes of Health. ADNI, in addition, is part funded as a public-private collaboration between academia and industry.

ADNI and DIAN Neuropathology Core Rationale

- 1. To achieve the goals of ADNI and DIAN, the Neuropathology Core is essential to validate the clinical and biomarker classifications and diagnoses.
- 2. Nuropathologic validation of both ADNI and DIAN participants is necessary to exclude data contaminated by individuals who may not have AD, or, more commonly, co-morbidities such as vascular disease and non-AD neurodegenerative disorders.
- 3. A single Neuropathology Core site is necessary because different sites use different processing and staining methods, as well as different antibodies, and may interpret diagnostic criteria differently.
- 4. A single Neuropathology Core ensures uniformity and fidelity of staining and application of diagnostic criteria to all ADNI and DIAN participants who come to autopsy.

ADNI and DIAN Neuropathology Core share common protocols with Knight ADRC

- 1. The ADNI and DIAN NPC capitalizes on the existing infrastructure of the Washington University Knight Alzheimer Disease Research Center (WU ADRC; P50-AG05681, JC Morris, PI), funded continuously by NIA since 1985.
- 2. The ADRC's Administrative (Dr. Morris) and Neuropathology (Dr. Cairns) Cores provide the framework for both the ADNI NPC and DIAN NPC.
- 3. Fidelity of data between ADNI, DIAN and NACC is maintained by using the same NACC Neuropathology Data Form as is used by all Alzheimer Disease Centers (ADCs) to report neuropathologic findings from autopsied cases, and is the primary data collection instrument.
- 4. The ADNI and DIAN NPC uses standard criteria for neuropathologic diagnoses of dementing illness and existing protocols and procedures .
- 5. Importantly, the ADNI and DIAN NPC does not interfere with or supersede neuropathologic activities at any ADNI or DIAN site.

Clinical Core Accomplishments: Enrollment

- Full enrollment of all ADNI 2 Cohorts
 - Normals: n=184
 - Subjective memory concerns: n=101
 - Early MCI: n=301 (including ADNI GO)
 - Late MCI: n=160
 - Mild dementia: n=142
- Total enrollment of new participants: n=780
- Rollover participants from ADNI1 and ADNI GO: n=391
- Total for ADNI2: n=1171

ADNI Sites in the USA www.adni-info.org

KnightADRC Alzheimer's Disease Research Center

Common Protocols used for ADRC, ADNI, and DIAN Participants

Immunohistochemistry, antibodies, and antigen retrieval methods used in ADNI and DIAN protocols (n = 15 blocks)

Antigen	Antibody name (Source)	Clone	Mode of staining	Pre- treatment	Dilution	Incubation time
Αβ	10D5 (Eli Lilly, Indianapolis, IN, USA)	10D5	Manual	98% FA	1:100,000	4°C overnight
Phospho-tau	PHF1 (Dr. P. Davies, Albert Einstein College of Medicine, NY , USA)	PHF1	Manual	MW	1:10,000	4°C overnight
Phospho-α- synuclein	Phospho-α- synuclein (Ser129) (Cell Applications, Inc., San Diego, CA, USA)	Rabbit polyclonal	Manual	98% FA	1:20,000	4°C overnight
Phospho-TDP-43	(Cosmo Bio USA, Inc., Carlsbad, CA, USA)	pS409/ 410	Manual	98% FA	1:40,000	4°C overnight
EA formio coid: NAVA/						

A, formic acid; MW, microwave

ADNI Participants Autopsied per Funding Period

ADNI Funding Period	ADNI-NPC	Deaths	Autopsies	Annual Autopsy Rate (%)
9-1-05 to 8-31-07	NO	6	0	0
9-1-07 to 8-31-08	YES	7	2	28
9-1-08 to 8-31-09	YES	8	8	100
9-1-09 to 8-31-10	YES	4	1	25
9-1-10 to 8-31-11	YES	13	6	46
9-1-11 to 8-31-12	YES	3	3	100
9-1-12 to 8-31-13	YES	10	8	80
9-1-12 to 7-31-14	YES	14	13	93
Total (2005-2014)	-	65	41	63
Total since NPC established	-	59	41	70

Note: The ADNI-NPC was established on 9/1/2007. In the current grant cycle, there have been 40 deaths and 30 autopsies (75% autopsy rate).

ADNI Sites and Participating ADC Neuropathology Core Leaders

*=1 case contributed. **=more than one case contributed.

An additional 9 cases Were provided to the ADNI-NPC by ADNI sites not affiliated with an ADC.

Site	ADC-Neuropathology Core Leader
OHSU	Randy Woltjer
USC	Carol A. Miller *
UCSD	Eliezer Masliah
COLUMBIA	Jean Paul Vonsattel
WUSTL	Nigel Cairns **
MSINAI	Vahram Haroutunian
RUSH	Julie A. Schneider
HOPKINS	Juan Troncoso
NYU	Thomas Wisniewski
UPENN	John Q. Trojanowski
UK	Peter Nelson
UPITT	Julia Kofler *
UCI	Ronald Kim *
UTSW	Charles L. White III **
EMORY	Martha Gearing **
KANSAS	Kathy Newell **
UCLA	Harry Vinters
MAYOJ	Dennis W. Dickson
IJ	Bernadino Ghetti *
NWU	Eileen Bigio
UCSF	William Seeley *
BWH	Matthew P. Frosch
SHRI	Thomas G. Beach **
BUSM	Ann C. McKee
UCD	Lee-Way Jin **
UWI	Michael Hart

	ADNI: Neuropathologic Diagnosis [N (%)]											TOTAL (%) ^
Clinical diagnosis at expiration	AD	AD + DLB	AD +TDP	AD +DLB +TDP	AD+ DLB +TDP+AGD	AD + ALB+ TDP	AD + AGD	AD + HS+ AGD	AD + TDP + I nfarcts	AGD	Pending	
DAT	14	10*	1	1			1	2†	1	1**	1	32 (78)
DAT+DLB				1	1	1						3 (7)
Pending											6	6 (15)
TOTAL (%) ^	14 (34)	10 (24)	1 (2)	2 (5)	1 (2)	1 (2)	1 (2)	2 (5)	1 (2)	1 (2)	7 (29)	41 (100)

Note: *One case had additional AGD; †One case had additional TDP-43 proteinopathy; **One case had additional tangles in the medial temporal lobe; ^Figures are rounded and may not equal 100%. Small vessel disease (arteriolosclerosis and cerebral amyloid angiopathy) was a feature of all cases; cases with infarcts/microinfarcts are noted in the Table.

Clinical and Multimodal Biomarker Correlates of Neuropathology in 22 ADNI Cases

JB Toledo^{a*}, NJ Cairns^{b*}, X Da^c, K Chen^d, D Carter^b, N Ayutyanont^d, E Householder ^b, A Roontiva^d, RJ Bauer^d, LM Shaw^a, C Davatzikos^c, MW Weiner^e, E Reiman^d, JC Morris^{b**} and JQ Trojanowski ^{a**}, and the Alzheimer's Disease Neuroimaging Initiative

 ^aDepartment of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,
^bDepartment of Neurology, Washington University School of Medicine, St. Louis, MO,
^cSection of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA,
^dBanner Alzheimer's Institute, Phoenix, AZ,
^eCenter for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco VA Medical Center/University of California San Francisco, San Francisco, CA.
^{*}These authors contributed equally to this paper.

Acta Neuropathol Commun 2013;1:65

Participant Characteristics (n = 22)

- Age = 72-88
- Gender = 77% male
- Education = 13-18 y
- *APOE* e4 + = 50%
- Clinical goups at T1 assessment:
 - 1 CN
 - 11 MCI
 - 10 DAT
- A clinical Dx of DAT due to AD was supported by a pathological Dx of AD in all cases.
- Other pathologies: DLB, TDP, AGD, HS, SVD.

Heatmaps of the Semiquantitative Neuropatholgic Grading

of ADNI Participants

AD, Alzheimer disease; DLB, dementia with Lewy bodies. From left to right: diffuse Aβ plaques, neurofibrillary tangles (NFT), Lewy bodies, and phopho-TDP-43-immunoreactive neuronal cytoplasmic inclusions (TDP Dep.).

Toledo, Cairns et al. Acta Neuropathol Commun 2013;1:65

Significant Areas of Hypometabolism (FDG-PET) in DLB

Toledo, Cairns et al. Acta Neuropathol Commun 2013;1:65

ADNI Neuropathology Core: Conclusions

The Neuropathology Core has:

- 1. Implemented a protocol to solicit permission for brain autopsy in ADNI participants at all 59 sites.
- 2. Established procedures to send appropriate brain tissue from the decedents to the Neuropathology Core for a standardized and uniform neuropathologic assessment.
- 3. Co-existent pathologies, most frequently synucleinopathy with Lewy bodies, are present in the majority of autopsied cases.
- 4. Clinical-biomarker-neuroimaging-neuropathologic studies are being undertaken.
- 5. Comorbid pathology at autopsy may explain variance in ADNI data.

Dominantly Inherited Alzheimer Network (DIAN): Aims

- 1. DIAN (U19 AG032438; JC Morris, PI) provides an opportunity to advance biomarker research in Alzheimer's disease (AD) both in its symptomatic and asymptomatic (preclinical) stages.
- 2. The DIAN study enrolls individuals from autosomal dominant (ADAD) families caused by a known deterministic mutation in the *PSEN1*, *PSEN2*, or *APP* genes.
- 3. Biomarker changes in asymptomatic mutation carriers (MCs) are interpreted with the certainty that these individuals are destined to become symptomatic at or about the same age as their affected parent.
- 4. The DIAN study is yielding the temporal ordering of AD biomarkers in asymptomatic and symptomatic MCs.
- 5. Neuropathology will determine the burden of AD pathology and the contribution of comorbid pathologies to biomarker changes.

DIAN Performance Sites

1	Institution	DIAN Site Leader
-	University College London	Martin Rossor
	German Center for Neurodegenerative Diseases (DZNE) Munich	Adrian Danek
	German Center for Neurodegenerative Diseases (DZNE) Tübingen	Mathias Jucker

Institution	DIAN Site Leader	Neuropathologist
Washington University, St. Louis	Randall Bateman	Nigel Cairns
Columbia University	Richard Mayeux	Jean-Paul Vonsattel
Indiana University	Bernadino Ghetti Martin Farlow	Bernadino Ghetti
University of California, Los Angeles	John Ringman	Harry Vinters
Bringham and Women's Hospital—MGH	Reisa Sperling	Matthew Frosch
Brown University—Butler Hospital	Stephen Salloway	Edward Stopa
University of Pittsburgh	Eric McDade	Julia Kofler
Mayo Clinic Jacksonville	Neill Graff-Radford	Dennis Dickson

Institution	DIAN Site Leader
Neuroscience Research Australia	Peter Schofield
University of Melbourne	Colin Masters
Edith Cowan University, Perth	Ralph Martins

KnightADRC WASHINGTON UNIVERSITY Alzheimer's Disease Research Center

Neuropathologic Assessment of 7 DIAN Participants and 15 Family Members (total = 22)										
Mutation	P/F	PMI (h)	Brain wt. (g)	Clin. Dx.#	Npath. Dx.	Α^ (Αβ)	B^ (NFT)	C ^ (NP)	SYN**	
PSEN1 I143T	Р	18	1,330	AD	AD+DLB	3	3	3	6	
PSEN1 M146L	Р	38	1,070	AD	AD+DLB	3	3	3	6	
PSEN1 H163R	Р	9	1,130	AD	AD	3	3	3	0	
PSEN1 H163R	F	4.5	1,300	AD	AD+ALB	3	3	3	ALB	
PSEN1 H163R	F	9	1,490	AD	AD	3	3	3	0	
PSEN1 H163R	F	6	1,210	AD	AD+DLB	3	3	3	6	
PSEN1 G206A	F	na	na	AD	AD	3	3	3	0	
PSEN1 G206V	Р	15	1,095	AD	AD	3	3	3	0	
PSEN1 G217R	F	15	1,040	AD	AD+DLB	3	3	3	6	
PSEN1 L226R	F	16	1,124	AD	AD+ALB	3	3	3	ALB	
PSEN1 I229F	Р	23	1,220	AD	AD	3	3	3	0	
PSEN1 I229F	Р	24.5	1,080	AD	AD	3	3	3	0	
PSEN1 S290C	F	60	1,144	AD	AD	3	3	3	0	
PSEN1 C410Y	F	21	1,224	AD	AD	3	3	1	0	
PSEN1 A431E	F	5	720	AD	AD+DLB	3	3	3	6	
PSEN1 T245p	Р	6.5	1050	AD	AD+DLB	3	3	3	6	
PSEN2 A141I	F	6	1,100	AD	AD+ALB	3	3	3	ALB	
APP K670N,M671L	F	6	1,210	AD	AD	3	3	3	0	
APP V717I	F	15	1,150	AD	AD	3	3	3	0	
APP V717I	F	26.5	1,370	AD	AD	3	3	3	Ο	
APP V717I	F	10	1,110	AD	AD+ALB	3	3	3	ALB	
APP V717I	F	na	980	AD	AD+ALB	3	3	3	ALB	
Mean	7P,15F	16.7	1,150		AD (100%)					
Range		4.5-60	720-1,490		AD+DLB/AI	_ <mark>B (</mark> 50°	%)			
P, participant; F, family member. ^NIA-AA stages.										

Comorbidities in AD in ADNI and DIAN Participants

Neuropatho	logic diagnoses	LOA	AD (ADNI)	ADAD (DIAN)						
Primary	Comorbidities**	N*	%	Ν	%					
AD	+/- Comorbidity	33	100	22	100					
AD	None	14	42.4	11	50					
AD	DLB/ALB	14	42.4	11	50					
AD	TDP-43	7	21.2	0	0					
AD	AGD	6	18.2	0	0					
AD	Hippocampal sclerosis	2	6.1	0	0					
AD	Infarcts	1	3.0	0	0					
AGD	None	1	3.0	0	0					
*7 cases pending: ** more than one comorbidity may be present is a single case.										

Aβ Load in ADAD and LOAD Participants

ADAD	Mutation	APOE	Sex	Edu.	Age at	CDR-	MMSE	Age at	Imaging-	CDR	NP	NP NP	CAA
				(y)	PiB-PET	SOB at	at PIB-	death	autopsy		DX1	DX 2 DX 3	
						PiB-	PET	(y)	intervals				
						PET			(y)				
1	PSEN1 M146L	44	Μ	16	43	5	21	44	0.67	3	AD	DLB	Moderate
2	<i>PSEN1</i> I229F	23	F	12	38	5	16	39	1.00	3	AD		Moderate
3	PSEN1 N135S	33	Μ	12	42	16	9	43	1.00	3	AD	DLB	Mild
4	<i>PSEN1</i> T245P	34	F	14	46	6.5	21	49	3.25	3	AD		Mild
5	<i>PSEN1</i> I229F	23	F	12	42	10	12	44	2.25	3	AD		Mild
6	<i>PSEN1</i> I143T	33	Μ	18	38	5	10	39	1.75	3	AD		Mild
7	<i>PSEN1</i> H163R	33	Μ	12	50	10	13	51	1.33	3	AD		Focal
LOAD													
1	NA	34	Μ	18	85	4	30	89	3.67	2	AD		Mild
2	NA	33	Μ	12	65	5.5	21	69	3.92	2	AD		Very mild
3	NA	34	F	13	79	6	20	83	3.83	3	AD		Mild
4	NA	34	F	13	68	2.5	26	72	3.83	3	AD		Focally
													severe
5	NA	34	Μ	18	66	13	12	71	4.75	3	AD	DLB	Mild
6	NA	34	F	16	83	0	28	88	4.83	3	AD	DLB	Mild
7	NA	34	Μ	20	76	4	25	80	4.67	3	AD	DLB TDP	Mild

A Zhou

Aβ Deposits: Morphological Heterogeneity

D, diffuse plaque; C, cored plaque; CP, compact plaque; A, cerebral amyloid angiopathy

Unbiased stereology methods measure Aß load

 Probe: Area Fraction Fractionator (Stero Investigator, MicroBrightField, Inc.)
ROI (gyral crest and sulcal depth gray matter). Mag. X1
Aβ load: Area fraction of cortex (n=19 brain regions)

Neuropathologic Heat Maps facilitate PET-PiB amyloid imaging in DIAN Participants

Aihong Zhou, Karl Friedrichsen Tammie Benzinger

Generation of heat maps using Aβ load in LOAD and ADAD

Aihong Zhou

Aβ plaques 10D5 IHC

Correlation between PiB-PET and postmortem plaques in ADAD

Total plaque burden-PiB: r = 0.71, p < 0.0001Diffuse plaque burden-PiB: r = 0.69, p < 0.0001Compact/cored plaque burden-PiB: r = 0.44, p < 0.0001

Aihong Zhou

Correlation between PiB-PET and postmortem plaques in LOAD

Kni

Total plaque burden -PiB: r = 0.60, p < 0.0001Diffuse plaque burden -PiB: r = 0.61, p < 0.0001Compact/cored plaque burden -PiB: r = 0.32, p < 0.001

Aihong Zhou

UNIVERSITY

Conclusions

- 1. ADNI and DIAN Neuropathology Core is facilitating multi-modal clinical-neuroimaging-biomarker-neuropathologic correlations.
- 2. PET-PiB amyloid imaging correlates well with total $A\beta$ burden including both diffuse and compact plaques.
- 3. Pure AD is more frequent in ADAD than LOAD.
- 4. Lewy body disease is the most frequent comorbidity in both groups.
- 5. Comorbidities including TDP-43 proteinopathy, hippocampal sclerosis and infarcts are present in LOAD but absent in ADAD.
- 6. Neuropathologic differences between LOAD and ADAD cohorts may have significance in clinical trial design and interpretation.

Acknowledgements The Participants

http://www.adni-info.org/ http://dian-info.org/

DIAN PI: John C. Morris ADNI PI: Michael W. Weiner

DIAN Sites (14): USA, Australia, United Kingdom, Germany ADNI Sites (59): USA, Canada

DIAN & ADNI Cores

Biostatistics Chengjie Xiong

Indiana University Bernardino Ghetti, Andrew Saykin

University of Kansas Kathy Newell

DIAN/ADNI Neuropathology Core Nigel Cairns Deborah Carter Erin Householder Benjamin Vincent Mingqiang Xie, Aihong Zhou

Washington University Division of Neuropathology Robert Schmidt Joseph Corbo Sonika Dahiya Richard Perrin D A N Dominantly Inherited Alzheimer Network

