

Vascular Risk Factors Cause AD? What do we mean in the age of AD-Biomarkers and Bioinformatics?

Helena C. Chui, M.D. University of Southern California Alzheimer Disease Research Center September 26, 2015

Introduction

- 1. Epidemiological studies indicate that Vascular Risk Factors increase the risk for incident Alzheimer disease, but apart from ApoE4 [which increases amyloid deposition in both the blood vessels and brain parenchyma], the explanation(s) or mechanism(s) are unknown.
 - a. VRF increase the risk of vascular brain injury (i.e., infarcts and hemorrhages), and therefore dementia due to mixed etiologies (AD+CVD).
 - Animal and human studies suggest possible interactions between vascular factors and accumulation of beta-amyloid in the brain. (Mechanisms are still unproven in humans)
- 2. Vascular risk factors are modifiable.
 - a. Undoubtedly, decreasing VRF will decrease the risk of "AD".
 - b. Will decreasing VRF also decrease <u>AD</u>?

Projected: 10% vascular risk reduction x 10 Yrs 8% reduction in new cases of "AD"

Barnes DE and Yaffe K. Lancet Neurology 2011; 10: 819.

What do we mean by "AD"? <u>AD</u> = Biomarker Standard

Do Not Mean

 "AD" defined as progressive dementia without clinical evidence of stroke (defined solely based on history, exam, neuropsychology, or structural MRI/CT).

Do Mean

- <u>AD</u> defined by widespread beta-amyloid plaques and p-Tau neurofibrillary tangles.
 - Beta-amyloid by CSF, PET, or neuropathology
 - P-Tau by CSF, PET or neuropathology

2004: Imaging β-Amyloid during life with Pittsburgh Compound B (PIB)

Klunk W. Ann Neurol 2004; 55: 306-319.

Associations Between VRFs and AD: Parallel or Interactive pathways? Mediation vs Moderation?

Mixed

AD biomarkers (CSF and PET amyloid / tau) Neuropathology: Plaques, Tangles, Infarcts

NIH Non-AD Summit May 1-2, 2013 Bethesda, Maryland (T Montine et al)

Topic 5 - Vascular Contributions to ADRD: Focus on<u>AD/Vascular</u> Interactions

Focus Area 2: Human-Based Studies

Recommendation 2 (S Craft / H Chui):

5.2.2. Determine interrelationships among cerebrovascular disease (CVD), vascular risk factors (VRF) with Aβ & neurodegeneration.

Neuropathology: Plaques, Tangles, Infarcts

Mixed

Associations Between HTN and AD: Parallel or Interactive pathways?

AD biomarkers (CSF and PET amyloid / tau) Neuropathology: Plaques, Tangles, Infarcts

VCI Mixed Systolic BP and Pulse Pressure are associated with greater accumulation of PiB (n=10)

Langbaum J. Neurobiology of Aging 2012; 33: 827.

Three ways to clear Aβ from the brain

Elimination of $A\beta$ fails with age and Alzheimer's disease

Weller R et al Acta Neuropath 2009; 117:1-14.

Enzymatic degradation by Neprilysin Insulin-degrading enzyme

Blood clearance via LRP-1

(low density lipoprotein receptorrelated protein) is less efficient with apolipoprotein E4

Perivascular lymphatic drainage (less efficient with cerebral amyloid angiopathy or arteriosclerosis)

Jonathan Kipnis, University of Virginia.

Associations Between DM and AD: Parallel or Interactive pathways?

AD biomarkers (CSF and PET amyloid / tau) Neuropathology: Plaques, Tangles, Infarcts

VCI Mixed

DM is associated with increased incident "AD"

Study	Aae	F/U	Numb	oers	All dementia	Vascular	AD+VaD	Alzheimer
	(yr)	(yr)	DM	No DM		dementia		disease
Yoshitake 1995 Hisayama 1985-1992	>65	7	70	756		2.8 (2.6, 3.0)		2.2 (0.97, 4.9)
Ott 1999 Rotterdam1990-1994	>55	2.1	692	5678	1.9 (1.3, 2.8)	2.0 (0.7, 5.6)	3.0 (1.0,9.3)	1.8 (1.1, 3.0)
Luchsinger 2001 WHICAP 1992-1997	≥65	4.3	255	1007		3.4 (1.7, 6.9)		1.3 (0.8,1.9)
MacKnight 2002 CSHA	≥65	4-6	503	5071	1.26 (0.9,1.7)	2.03 (1.15, 3.5)		1.3 (0.83, 2.1)
Peila 2002 HAAS 1991-1996	72-93	2.9	900	1674	1.5 (1.0, 2.2)	2.3 (1.1, 5.0)	1.8 (1.1, 2.9)	1.6 (0.9, 3.0)
Cheng 2011 WHICAP 1999-2001	>65				1.7 (1.4, 2.90)		1.6 (1.0, 2.6)	1.3 (0.8, 2.2)
Arvanitakis 2004 Religious Orders Study	75	5.5	127	697				1.6 (1.1, 2.5)
Ahtilouoto 2010 Vantaa 85+	>85		87	268	2.09 (1.34, 3.25)			

Diabetes is associated with infarction but not AD Pathology Religious Orders Study (n=200)

Characteristic	Diabetes (n= 36)	Non diabetes (n=197)	P Value
Age at death	84.4 (6.6)	85.8 (6.7)	0.25
Sex, % men	63.9	42.1	0.02
Education, y	17.4 (4.1)	18.2 (3.4)	0.22
Dementia, %	50.0	44.2	0.52
Cerebral Infarction	52.8	32.5	0.02
Cortical infarction	19.4	8.1	0.06
Subcortical infarction	50	26.9	0.01
Overall AD pathology	0.67 (0.62)	0.71 (0.65)	0.74
Neuritic plaques	0.84 (0.82)	0.76 (0.82)	0.51
Diffuse plaques	0.77 (0.91)	0.83 (0.86)	0.60
Neurofibrillary tangles	0.39 (0.50)	0.55 (0.74)	0.21

Arvanitakis Z et al. Neurology 2006;67:1960–1965

Regional pattern of glucose hypmetabolism differs in T2DM and AD

Baker L.. Craft S. Arch Neurol. 2011;68(1):51-57

DM is associated with decreased FDG but not increased PiB amyloid (Mayo Aging Study; n=749)

FDG PET

PiB ratio

Roberts R. J Nucl Med 2014; 55:759–764

Associations Between Lipids and AD: Parallel or Interactive pathways?

AD biomarkers (CSF and PET amyloid / tau) Neuropathology: Plaques, Tangles, Infarcts

VCI Mixed

Washington Heights Inwood Columbia Aging Project (WHICAP)

- Baseline (1992-1994) N=2,126 > 65 y/o (AA 33%; Hispanic 44%; White 22%)
- Follow-up Q 18 mo: By 2003, of 1,138 subjects, 176 developed prob AD (246 prob+poss AD) out of 1,138 subjects
- Vascular risk factors: DM, HTN, DL, Smoking
- Hazard ratios for prob AD:
 - 1 risk factor: 1.8 (1.1,3.0)
 - 2 risk factors 2.8 (1.7,4.7)
 - 3 risk factors 3.4 (1.8, 6.3)

Higher HDL-C >55 mg/dl in midlife was associated with decreased risk of incident AD (OR=0.4 (0.2, 0.9) in WHICAP study (Reitz et al., 2010).

Luchsinger JA et al. Neurology 2005; 65: 545-551.

LDL-Cholesterol is associated with increased; while HDL cholesterol is associated with decreased brain amyloid

Correlation between LDL- C(left) and LDL-C (right) and PIB index, controlling for HDL-D (left) or LDL-C (right panel), age, sex apoE4 status

Reed BR et al. JAMA Neurology 2014; 71: 195-200.

Statistical cortical maps showing the impact of A β , HDL-C and their interaction on cortical thickness in PIB+ subjects (n=22)

 $A\beta = -.14$ (p= .07); HDL = +.45 (p<.01); Interaction = +.36 (p = .01)

Villeneuve S, et al., Neurology 2014; 83: 40-7

Increased accumulation of hippocampal β -amyloid in both male and female 3xTg Mice fed a high fat diet

Regular diet (14% kCal = fat)

High fat diet (60%kCal = fat)

Barron AM.... Pike D. PLoS One 2013;8:e78554.

Associations Between VRFs and AD: Parallel or Interactive pathways?

Mixed

AD biomarkers (CSF and PET amyloid / tau) Neuropathology: Plaques, Tangles, Infarcts

II. Effects of VRFs and AD on the Microvasculature and the Blood Brain Barrier

AD biomarkers (e.g., Amyloid and Tau PET Imaging)

Hypertension-Associated Impairment in Vasoreactivity to Hyper- and Hypo-Capnea (pC0₂)

Hajjar, I et al. Hypertension. 2011

Leaky Blood Brain Barrier in early AD hippocampus Dynamic Contrast Enhanced (DCE)-MRI

Montagne A et al., Neuron 2015; 85: 296-302.

Do vascular risk factors moderate <u>AD</u>?

a. <u>Association with Age</u>:

a. HTN, DM, and DL increase with age, as does AD.

b. <u>Selective vulnerability</u>:

a. Do VRF increase pathology in areas that are selectively vulnerable to
AD? Lipid and precuneus - Yes ; Diabetes and orbital frontal lobe – No

c. <u>Pathogenic interactions</u>:

a. Do VRF increase beta-amyloid or p-Tau? Increased Pulse pressure - yes. Diabetes – no; DL - yes. If yes, how?

d. <u>Sequence of events</u>:

a. Do VRF mediate (precede) or moderate (follow) the accumulation of AD biomarkers?

Do vascular risk factors moderate <u>AD</u>?

- 5. <u>Progression</u>:
 - a. Do VRF accelerate AD progression, independent of infarcts and hemorrhages?
- 6. <u>Mixed pathology</u>:
 - a. How do we separate the effects of VRF on AD pathology versus on infarcts and hemorrhages?
- 7. *Multiple clinical phenotypes*:
 - a. Will direct effects of VRF and AD biomarkers change clinical phenotype or just accelerate AD progression?

Do vascular risk factors moderate <u>AD</u>?

8. <u>Biomarkers</u>

- a. How are peripheral blood and <u>CSF biomarkers</u> related?
- b. Do <u>cerebrovascular reactivity</u>, <u>endothelial</u>, <u>and blood</u> <u>brain barrier</u> function mediate the relationship between VRF and AD?
- 9. <u>Risk factors</u>:
 - a. Are HTN, DM, DL risk factors for <u>AD?</u>
- 10. *Translational potential*:
 - a. Will decreased VRF decrease <u>AD</u>?

Systems Biology Approach to Complex Genetic-Environmental disease: (General theory with "Koch's" Postulates = special theory)

Meng Q et al. Obesity, Diabetes, and Cardiovascular Disease. Curr Cardiovasc Risk Rep 2013: 7: 73-83.

Diabetic Microvascular-Complication Network

EGFR-Induced Insulin Resistance and Impaired GAPDH-Induced Microvascular Complications

Sengupta U et al. PIoSONE 2009; 4: e8100.

Conclusions: Do VRF moderate <u>AD</u>?

• Traditional reductionist approach using biomarker defined <u>AD</u> is just beginning.

– So far...

- HTN limited evidence
- DM negative evidence
- Lipids some evidence
- Systems Biology Approach

interactions between <u>molecular drivers</u> of metabolic disease and β -amyloid dysregulation.

Aging Brain Investigators NIA P01-AG12435

