

Generating mouse models of sporadic tauopathies using pathological tau purified from human brains October 14, 2016

Jing Guo, Ph.D. Center for Neurodegenerative Disease Research University of Pennsylvania

Pathophysiology of tau

Alzheimer's disease education and referral, NIA

Tau pathology

Tauopathies: neurodegenerative diseases characterized by intracellular aggregation of hyperphosphorylated tau, e.g. Alzheimer's disease (AD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP).

Neurofibrillary tangles (NFT)

Neurofibrillary tangles in AD:

- Enriched β-pleated sheets
- Stained by thioflavin S (ThS), Congo red
- Paired helical filaments with a diameter of ~8-20nm

By Josh Daniels

Lee et al., 1991

Developing cellular and mouse models with tau aggregation

- Rationale: Tau pathology is a key mediator of neurodegeneration.
- NFTs correlate with neuron loss and cognitive decline better than Aβ plaques
- >40 tau mutations found in patients with frontotemporal dementia and Parkinsonism linked to chromosome 17
- Use of models:
- For elucidating mechanisms underlying the onset and progression of the diseases (?)
- For understanding mechanisms of tau-mediated neuronal dysfunction/neurodegeneration
- For preclinical testing of potential therapies
- Challenge: Tau is a highly soluble protein. Overexpression of even mutant tau does not lead to aggregation in cells.

Nucleation-dependent fibril assembly

Seeded fibrillization in cultured cells

Intracellular tau fibrillization seeded by exogenous pffs in cultured cells

QBI 293 cells transiently transfected with WT T40:

- Internalization of small quantities of tau pffs is sufficient to template the fibrillization of soluble tau.
- Tau pffs can spontaneously enter cells through endocytosis.

Guo and Lee, JBC, 2011

Tau pffs induce tangle-like aggregates in primary neurons

Primary hippocampal neurons from PS19 (P301S tau) mouse

AT8 (ext)

Guo and Lee, FEBS Letters, 2013

Seeding by preformed tau fibrils (tau pffs) in vivo

Hippocampal injection of tau pffs into 2-3 mo old PS19 (P301S) mice

control

Untreated PS19: appreciable pathology seen in 12 mo old mice

Tau pff injected

LC: locus coeruleus

Iba, Guo, et al., J. of Neuroscience, 2013

Distinct patterns of tau pathology induced by different injection sites

Iba, Guo, et al., J. of Neuroscience, 2013

The "prion-like" cell-to-cell transmission of disease-associated protein aggregates

Guo and Lee, Nat. Med, 2013

Stereotypical spreading of disease pathology as shared phenomenon among neurodegenerative diseases

Jucker and Walker, Nature, 2013

Outline

- A. Generating a mouse model of sporadic tauopathies using AD brain-derived tau aggregates
- B. Exploring the effects of Aβ plaques on tau pathology in plaque-bearing mice
- C. Characterizing pathology induced by tau aggregates purified from different tauopathies

Injection of synthetic tau pffs into WT mice

2-3 mo old WT mice

24 months

Purification of pathological tau from AD brains

Rapid clearance of injected AD-tau

AD-tau induces and propagates tau pathology in WT mice

AT8

Time-dependent maturation of induced tau aggregates in WT mice

Guo et al., JEM, in press

Injection of control brain extracts does not induce tau pathology

AT8

Propagation of tau pathology to anatomically connected brain regions

Conformational difference between synthetic tau fibrils and ADtau seeded fibrils

Hep-T40: Heparin-induced tau fibrils Guo et al., *JEM*, in press [AD]T40: recombinant tau fibrils seeded by 10% AD-tau in vitro

Summary for part A

- Tau fibrils developed in AD brains are different from synthetic tau fibrils.
- Intracellular milieu? Post-translational modifications? Selection pressure?
- Induction and propagation of tau pathology in WT mice provide stronger support for the transmission hypothesis.
- Relatively restricted progression of tau pathology in WT mice.
- → Other factors are promoting pathological tau transmission in diseased brains? E.g. age, Aβ plaques, genetic risk factors...

Outline

- A. Generating a mouse model of sporadic tauopathies using AD brain-derived tau aggregates
- B. Exploring the effects of Aβ plaques on tau pathology in plaque-bearing mice
- C. Characterizing pathology induced by tau aggregates purified from different tauopathies

Two types of tau pathology: neuronal inclusions (NIs) and neuritic plaque-like tau aggregates (NPs) 3 months AT8

 $2\ \mu g$ AD-tau injected in this study.

He, Guo, et al., submitted

Competition in the formation of NIs and NPs mediated by plaques

3 months

AT8

He, Guo, et al., submitted

Spatiotemporal development of NIs and NPs

Primed tau aggregation at the peri-plaque dystrophic neurites

He, Guo, et al., submitted

Indirect enhancement of NIs and neuropil threads by Aβ plaques

He, Guo, et al., submitted

Summary for part B

- Aβ plaques promote the induction, maturation and propagation of tau pathology in animals with endogenous expression levels of tau.
- Consistent with neuropathological data and recent imaging studies
- Support a modified version of amyloid cascade hypothesis
- Two-step mechanism of Aβ-mediated tau pathogenesis :
- Enhanced seeded aggregation of tau in the peri-plaque dystrophic neurites → NP formation.
- (2) NPs promote neuropil threads and NFT-like tau pathology through secondary seeding.

Outline

- A. Generating a mouse model of sporadic tauopathies using AD brain-derived tau aggregates
- B. Exploring the effects of Aβ plaques on tau pathology in plaque-bearing mice
- C. Characterizing pathology induced by tau aggregates purified from different tauopathies

Heterogeneities in tauopathies

	Isoform composition of tau aggregates	Brain region affected	White matter pathology	Cell type involvement	Major symptoms
AD	3R and 4R tau at 1:1	Mainly cortical	No	Neurons	Cognitive impairment
CBD	Predominantly 4R tau	Cortical and subcortical	Extensive	Neurons + glia	Motor with associated cortical dysfunction
PSP	Predominantly 4R tau	Mainly subcortical	Moderate	Neurons + glia	Motor deficits

Caused by different strains of tau aggregates developed in different tauopathies?

Distinct patterns of tau pathology induced in WT mice by pathological tau purified from different tauopathies

3 months

Narasimhan, Guo, et al., in preparation

Double-labeling for glial tau pathology

Oligodendrocytes

Astrocytes

Narasimhan, Guo, et al., in preparation

Distribution of different types of tau pathology

Summary for part C

- Tau aggregates developed in different tauopathies are of different strains.
- Cell type-specific development of tau pathology is dictated by pathological tau strains.
- Distribution of neuronal tau pathology is primarily determined by initiation sites and their connectome.

Acknowledgment

- Virginia Lee and John Trojanowski
- Kurt Brunden
- Sneha Narasimhan
- Zhuohao He
- Lakshmi Changolkar
- Bin Zhang
- Ronald Gathagan
- Anna Stieber
- Michiyo Iba
- Jennifer McBride
- John Robinson
- Terry Schuck
- Bryan Zoll
- Joshua Daniels
- Soo-Jung Kim

 Other members of the Center for Neurodegenerative Disease Research

Funding:

- ➢ NIH AG10124, AG17586
- CurePSP
- The Woods Foundation
- BrightFocus Foundation postdoctoral fellowship