Alzheimer’s Disease and Genetics

* Where are we now?
 What can genetics findings be used for?

* What do we expect to achieve?

 Whatis the final goal?

Is technology driving what we do?
Or
Is technology being used to answer questions?
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Alzheimer’s Disease and Genetics

e Where are we now?
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Where are we now?

Rare Variants

Late-Onset AD
Rare variants

Early-Onset AD
Rare variants

1. APP
2. PSEN1
3. PSEN2

1. PSEN2 (early and late onset)
2. APP (protective variant)

3. TREM2

4. UNC5C

5. TREMLZ2

6. PLXNA4

/. AKAP9




1. APOE 15. CASS4 Late_Onset AD

2. SORL1 Closest 16. INPP5D .

3 CRI gene 17 MEF2C Common variants

4. CLU 18. NMES8

5. PICALM 19. ZCWPW1

6. BINI1 20. CELF1

7. CD2AP 21. FERMT?2

8. EPHA1 22. TREM2L/TREM?2

9. MS4A4A 23. GLIS3

10. ABCA7 24. ABCG1

11. HLA-DRB5/HLA-DRB1 | 25. GalNAc

12. PTK2B 26. Intergenic —chr 9

13. SLC24A4/RIN3 27. FRMD4A

14. MAPT

not CD33

e P<5x108 /APOE
« OR=1.08-1.37,5.22
« MAF =3.9% - 49% |




GWAS signals: 90-95% of causative variants are in non-

promoter regulatory elements

regulatory element

GWAS signal
causal variant

N\

£

7N

gene promoter

Genomic information

 eQTL (GTEX)
 Roadmap

* Encode

* Fantom 5

New Technology

e Capture C methods

* CRISPR
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Known AD Genes

O NSO LA WLWDNR

9.
10. UNC5C
11. PLXNA4
12. AKAP

APP
PSEN1
PSEN2
APOE
SORL1
CR1
ABCA7
MAPT
TREM2

Other GWAS loci

association
signal
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1
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gene

“New wine
from old
bottles”




Alzheimer’s Disease and Genetics

 What can genetics findings be used for?
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 Prediction

e Mechanism

* Drug targets

Gene —> Protein —>» Mechanism/

Pathway

—> Drug
target




Prediction




APP Autosomal dominant
PSEN1 Highly penetrant

DSEN? Early-onset
Rare! (< 0.1%7)

Highly predictive
Applies to a very small number of cases

Used to design prevention trials



APOE

Odds ratio Control Case
Genotype | (95% Confidence frequency | frequency
interval) (percent) (percent)

€3/e3 1.0 (referent) 60.9 36.4

£2/e2 0.6 (0.2-2.0) 0.8 0.2

€2/e3 0.6 (0.5-0.8) 12.7 4.8

g2/e4 2.6(1.6-4.0) 2.6 2.6

e3/e4 3.2 (2.8 -3.8) 21.3 41.1

e4/e4 14.9 (10.8 — 20.6) 1.8 14.8

e4/e4 35.07 (23.8 —51.8) | onset age 60 — 69 years

Farrer et al. JAMA 278, 1349: Genin et. al. Molec. Psychiatry 16, 903 (2011)




APOE

Percent in Life Time Risk — Age 85 years
Genotype Controls (male/female)
£3/€3 60.9% 7% — 12%
£3/e4 21.3% 22% - 35%
e4/e4 1.8% 52% — 68% <.

Life-time risk — risk to develop AD between birth and a specific age
(85 year in table above)

Genin et. al. Molec. Psychiatry 16, 903 (2011)
Y



Other rare variant genes

* TREMZ2

TREM?2
control
Variant | carrier Odds p-value
frequency ratio
R47H 0.4% 2.29 4.31 x 1012
R62H 1.26% 1.67 5.64 x 1012
Modest odds ratio
Semi-rare

Two additional loci:

* OR=1.58 (risk allele frequency in controls|= 1.28%)
* OR=2.29 (risk allele frequency in controls|= 0.4%)

African Americans

Caucasians

ABCA7
ABCA7

OR
OR

¥ 1.79 (C11.47 - 2.12); risk allele controls = 7%
+1.11 (Cl}1.11 - 1.19) risk allele control$ = 19%

Reitz et al. JAMA 309, 1483 (2013) —_—



Overall
Chr. Closest gene? MAF (SE)?
OR (95% Cl) Meta P-value
1 CR1 0.197 (0.012) 1.18 (1.14-1.22) 5.7x10-24
2 BIN1 0.409 (0.017) 1.22 (1.18-1.25) 6.9x10-44
6 CD2AP 0.266 (0.010) 1.10 (1.07-1.13) 5.2x10-1
7 EPHA1 0.338 (0.010) 0.90 (0.88-0.93) 1.1x10-13
8 CLU 0.379(0.010)  0.86 (0.84-0.89) 2.8x1025
11 MS4A6A 0.403 (0.012) 0.90 (0.87-0.92) 6.1x10-16
11 PICALM 0.358 (0.008) 0.87 (0.85-0.89) 9.3x10-26
19 ABCA7 0.190 (0.012) 1.15 (1.11-1.19) 1.1x10-15
6 HLA-DRB5/HLA-DRB1 0.276 (0.012) 1.11 (1.08-1.15) 2.9x10-12
8 PTK2B 0.366 (0.012) 1.10 (1.08-1.13) 7.4x10-14
11 SORL1 0.039 (0.004)  0.77 (0.72-0.82) 9.7x10-15
14 SLC24A4/RIN3 0.217 (0.009) 0.91 (0.88-0.94) 5.5x10-°
2 INPP5D 0.488 (0.018) 1.08 (1.05-1.11) 3.2x108
5 MEF2C 0.408 (0.010) 0.93 (0.90-0.95) 3.2x108
7 NMES8 0.373 (0.012) 0.93 (0.90-0.95) 4.8x10°
7 ZCWPW1 0.287 (0.016) 0.91 (0.89-0.94) 5.6x10-10
11 CELF1 0.316 (0.022) 1.08 (1.05-1.11) 1.1x10-8
14 FERMT?2 0.092 (0.009) 1.14 (1.09-1.19) 7.9x10-°
20 CASS4 0.083 (0.006) 0.88 (0.84-0.92) 2.5x108
&



Overall
Chr. Closest gene? MAF (SE)?
OR (95% Cl) Meta P-value
1 CR1 0.197 (0.012) 1.18 (1.14-1.22) 5.7x10-24
2 BIN1 0.409 (0.017) 1.22 (1.18-1.25) 6.9x10-44
6 CD2AP 0.266 (0.010) 1.10 (1.07-1.13) 5.2x10-1
7 EPHA1 0.338 (0.010) 0.90 (0.88-0.93) 1.1x10-13
8 CLU 0.379(0.010)  0.86 (0.84-0.89) 2.8x1025
11 MS4A6A 0.403 (0.012) 0.90 (0.87-0.92) 6.1x10-16
11 PICALM 0.358 (0.008) 0.87 (0.85-0.89) 9.3x10-26
19 ABCA7 0.190 (0.012) 1.15 (1.11-1.19) 1.1x10-15
6 HLA-DRB5/HLA-DRB1 0.276 (0.012) 1.11 (1.08-1.15) 2.9x10-12
8 PTK2B 0.366 (0.012) 1.10 (1.08-1.13) 7.4x10-14

OR or (1/OR) range =1.08 —1.22

Prediction?
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Number of individuals

100

0
135 140 145 150 155 160 165 170 175 180

Number of risk alleles

controls cases

200 risk genes

Risk allele is common (0.1 — 0.9)
GRR=1.04

Disease prevalence is 10%

Gibson (2012) Nature Review Genetics 13, 135 @






Prediction

* Some rare variants are highly predictive

e Some rare variants will be modestly predictive

APOE is a major contributor to risk

e Common variants have a limited contribution to risk
assessment

Will find more common variants

May find more rare-variants — modest predictive value

Unlikely that a common large effect gene (e.g. APOE)
will be found



« Mechanism

Expected outcomes:
* Find genes that identify specific mechanisms
e Multiple genes in the same pathway

e Effect direction
O High risk allele loss or gain of function
O High-risk allele increase of decrease expression




Mechanisms/pathways

AP metabolism
APP, PSEN1, PSEN2

Innate immune system — microglial cells
TREM2, CR1, M54 region, two new genes

Cholesterol metabolism (?)
APOE, ABCA7

Intracellular vesicle trafficking
SORL1, ABCA7

Synaptic dysfunction/membrane function
PICALM, BIN1, EPHA1




* Drug targets

Can Genetic discoveries be used for drug target identification?

Alzheimer’s Disease
AR antibodies
Presenilin inhibitors
BACE1 inhibitors
APOE




Coronary artery disease

PCSK9 ~ APCSK9 Trial Drug
2003 2006 " 2011 " 2015
3 yrs 4% 5yrs 4 yrs

PCSK9 null protective allele

PCSK9: Proprotein convertase subtilisin/kexin type 9

What about small-effect
genes and drug development?




NATURE | Vol 466 | 5 August 2010 p707 nature

ARTICLES

Biological, clinical and population
relevance o jor blood lipids

A list of authors and their affiliations appears at the end of the paper.

Plasma concentrations of total cholesteyol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and
triglycerides are among the most impgftant risk factors for coronary artery disease (CAD) and are targets for therapeutic
intervention. We screened the genophe for common variants associated with plasma lipids in >100,000 individuals of
European ancestry. Here we report @5 significantly associated loci (P <5 X 10 8), with 59 showing genome-wide significant
association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms
(SNPs) near known lipid regulafors (for example, CYP7A1, NPCIL1 and SCARBT) as well as in scores of loci not previously
implicated in lipoprotein metgbolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme
lipid phenotypes and have ap/impact on lipid traits in three non-European populations (East Asians, South Asians and African
Americans). Our results idéntify several novel loci associated with plasma lipids that are also associated with CAD. Finally,
we validated three of thefiovel genes—GALNT2, PPP1R3B and TTC39B—with experiments in mouse models. Taken together,
our findings provide thg foundation to develop a broader biological understanding of lipoprotein metabolism and to identify
new therapeutic oppgfrtunities for the prevention of CAD.

Gene* P-value Trait Effect size drug

(mg/dl)

HMG co-A reductase 9 x 1047 TC +2.84 statins
NPC1L1 3x 10U TC +2.01 ezetimibe
PCSK9 2 x1028 LDL +2.01 alirocumab
APOE 9 x 10-147 LDL +7.14 l none (——




© 2015 Nature America, Inc. All rights reserved.

ANALYSIS

nature

genetics

The support of human genetic evidence for approved
drug indications

Matthew R Nelson!, Hannah Tipney?, Jeffery L Painter!, Judong Shen!, Paola Nicoletti?, Yufeng Shen3-4,
Aris Floratos®?*, Pak Chung Sham®9%, Mulin Jun Li%?, Junwen Wang®7, Lon R Cardon®, John C Whittaker? &
Philippe Sanseau?

Over a quarter of drugs that enter clinical development fail
because they are ineffective. Growing insight into genes that
influence human disease may affect how drug targets and
indications are selected. However, there is little guidance about
how much weight should be given to genetic evidence in making
these key decisions. To answer this question, we investigated
how well the current archive of genetic evidence predicts drug
mechanisms. We found that, among well-studied indications,
the proportion of drug mechanisms with direct genetic support
increases significantly across the drug development pipeline,
from 2.0% at the preclinical stage to 8.2% among mechanisms
for approved drugs, and varies dramatically among disease
areas. We estimate that selecting genetically supported\‘
could double the success rate in clinical develo
Therefore, using the growing wealth of hu
select the best targets and indications should have a measurable

856 N VOLUME 47 | NUMBER 8 | AUGUST 2015 NATURE GENETICS

We estimate that selecting genetically supported
targets could double the success rate in clinical development.




Drug targets

e Genetic studies can lead to successful drug
development

* Effect size:
— Does not predict druggability

— Small effect genes are potential drug targets.
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Tesla Syndrome

t's new
t’s shiny
t must be better!

| want one!

Add to cart



Tesla Syndrome

Is technology driving what
we do?

Or

Are we using better
technology to answer
important questions?

E Add to cart |




Next Generation DNA sequencing
* whole exome
* whole genome

RNASeq

Histone acetylation/methylation
Methylation

DNase hypersensitivity

XYZomics

E Add to cart |



Whole exome sequencing

 DNA sequence for all (most) exons

~$600/sample

Coding/splice junction mutations
5"and 3" UTR

Some small RNAs

Whole genome sequencing

* DNA sequence for all (most) 3 x 10° nucleotides

>+ $1,250 - $1,350/sample
* All coding, non-coding, intergenic mutations
e Can get all (most) structural variants




Pros - Whole exome sequencing
e cheaper
 Less costly to process data
(S40/subject versus $140/subject)

e Easy (sort of) to interpret

Cons
* Miss 98% of genetic variability
e Limited resolution for structural variants

Pros - Whole genome sequencing
e Get all (most) mutations
e Potential for all structural variants

Cons
* More expensive to produce/process/store
* More difficult to interpret ALL the data




Genomic resources
* Encode
* RoadMap
* GTeX
* Fantom>b
* Other databases

Enhance interpretation of
intergenic and intronic
genetic variation




Structural Variants (SVs) Introduction

Type
— Insertions
— Deletions
— Inversions
— Translocations
— Copy number variation (CNV)

Size
— Inversely related to frequency
— 1bp to very large

3
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ARTICLE

d61:10,1038/nsture09534

A map of human genome variation from
population-scale sequencing

€2011 Macmillan Publishers Limited. All rights. reserved

e SVs account for more of our genetic variability
than single nucleotide variants (SNPs)




Log,o (humber of variants)
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* Currently miss SVs in the 1
bp to ~5,000 bp range
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Structural Variants (SVs)

* SVs - Alzheimer’s disease/other neurologic disorders
— APP duplication
— SNCA duplication
— PSEN1 indel
— PMP22 deletion/duplication
— MAPT inversion/CNVs
— Loss-of-function deletion — ABCA7

Whole genome sequencing will
allow us to see SVs of all sizes —
not previously genotyped




Imputation
| |

Y

haplotype 1
haplotype 2

haplotype 3
haplotype 4

haplotype 5

Reference panel

* 30,000 Genomes

1. Combined data from different genotyping platforms

2. Test variants not directly genotyped: rare-variants

7O

O

t

t

Rare variant
detected by
sequencing

Rare variant
carrier imputed

Rare-Variant

GWAS

3




Concordance: HRC vs. WGS

MAF Ranges “Best Guess”

% Concordance

0.2-1%

99.731

“Stringent”
% Concordance

99.956

1-3%
3-5%
5-10%
10-15%
15-20%

Genotypes Used 90,251,702

* Hard-call genotypes from imputation

99.522
99.373

99.389

99.239
99.068

99.924
99.876

99.847

99.646
99.424
76,642,843

— “Best Guess” — call goes to any genotype with prob>0.5
— “Stringent” — call goes to genotypes only with prob>0.9

*  Comparing HRC imputation of ADNI GWAS vs. ADNI WGS genotype calls in 213 ADNI samples

* Only looking at alternate genotype concordance (R/A; A/A)

&
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| New wine
Irr:p:zaetsIC)eZ;sting GWAS genotypes from old
* Impute to an allele frequency of 0.1% bottles”
* Most SVs
* Disease specific mutations Analyze rare
* Ethnic groups not in reference panel variants not

directly genotyped

Rare-Variant GWAS




Whole genome sequencing:
e detect all SVs

* detect rare variants not in reference panels
(e.g. Alzheimer’s disease — specific variants)

« variants in different ethnic groups

Use both whole genome
sequencing and imputation

3



Future:
* Use imputed genotypes for replication studies

* Generate reference panels from:
O Different ethnic groups
O Disease populations
O Sequence data processed for SVs



Goal: Completely resolve the genetics of AD — all genetic
variation that alters risk

The longer the list of valid risk/preventative genes;
 The better the chance of finding a druggable target

e The more we will understand about disease
mechanism
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The End




