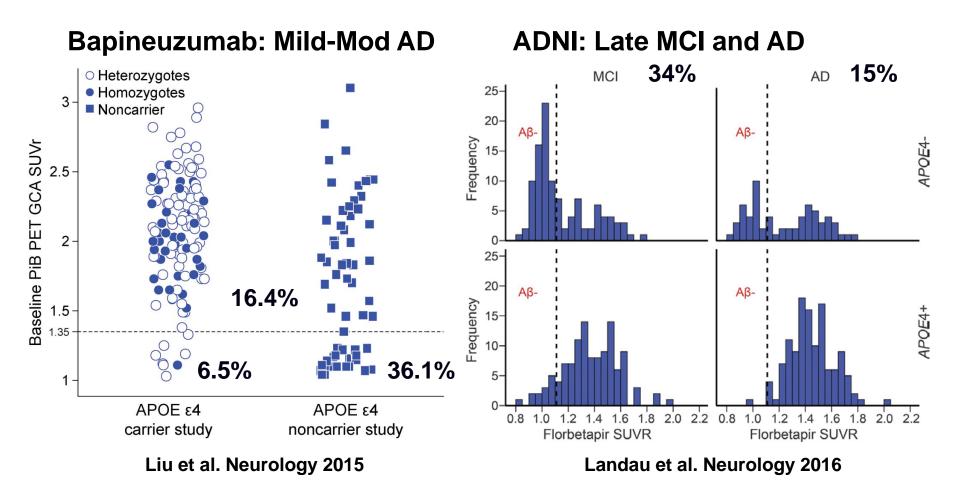
Molecular Imaging Heterogeneity of Clinically Defined AD

Gil Rabinovici, M.D. Edward Fein & Pearl Landrith Endowed Professor UCSF Memory & Aging Center

> 2017 Spring ADC Meeting Boston, MA April 22, 2017

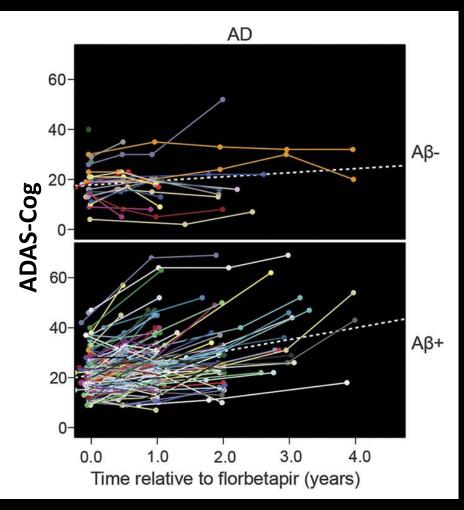

Disclosures

- <u>Research support</u>
 - Avid Radiopharmaceuticals/Eli Lilly, GE Healthcare, Piramal Imaging
 - NIH, American College of Radiology, Alzheimer's Association, Tau Consortium, Association for Frontotemporal Degeneration, Michael J Fox Foundation
- Consulting/honoraria
 - Eisai, Genentech, Lundbeck, Merck, Putnam, Roche

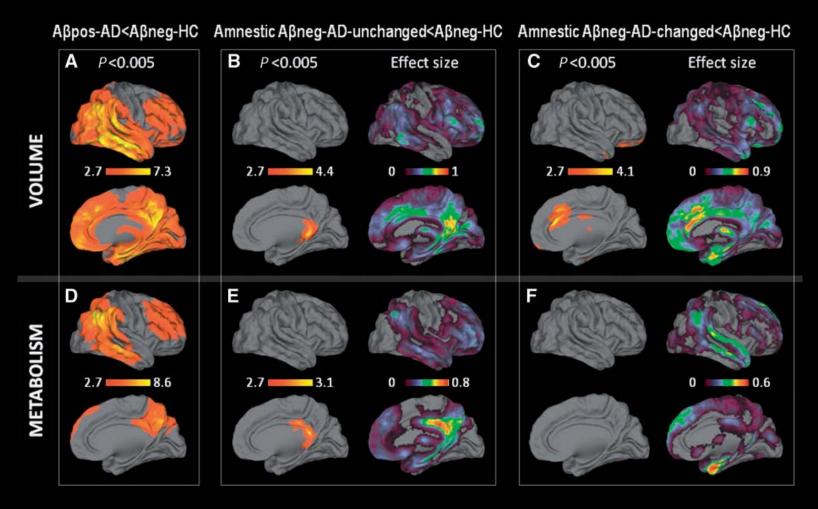
Outline

- Heterogeneity in causes of clinical AD dementia
 - Amyloid-negative MCI/AD
 - Prevalence
 - Demographics, clinical features
 - Biomarker signatures, relationship to SNAP
- Heterogeneity in clinical presentations of AD neuropathology
 - Molecular correlates of non-amnestic AD
 - Early age-of-onset AD (sporadic)

Rates of Aβ Biomarker Negativity in Clinical AD

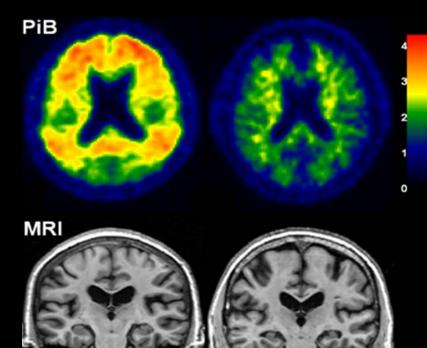

Prevalence of Aβ+ in Clinical AD Decreases with Age

Ossenkoppele et al. JAMA 2015


Characterization of Aβ- MCI/AD in ADNI

- Demographics
 - Older than Aβ+
 - M > F
- Cognition and function
 - Better at baseline (MCI)
 - Slower decline (MCI and AD)
- Lower prevalence ApoE4
 - MCI: Aβ- 16% vs. Aβ+ 71%
 - AD: Aβ- 4% vs. Aβ+ 75%
- Less abnormal neurodegeneration biomarkers
 - CSF t-tau, p-tau
 - Baseline MRI and FDG
 - Longitudinal MRI

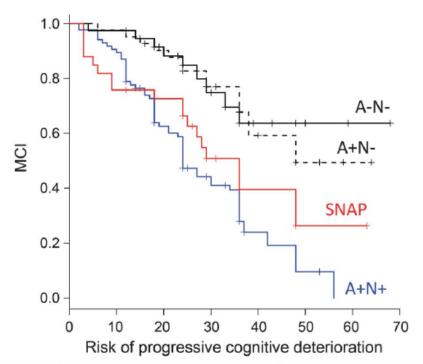
Landau et al. Neurology 2016


Neurodegeneration in Aβ-negative Amnestic AD (N=21)

Chételat et al. Brain 2016

Suspected Non-Alzheimer Disease Pathology (SNAP)

- SNAP in MCI and AD dementia
 - 17%-35% of MCI
 - ~6%-15% of AD dementia
 - Older age-of-onset
 - Male > female
 - ApoE4 rates 11%-32%
- Rate of decline intermediate between A-/N- and A+/N+
- No clinical fingerprint of a single underlying disease
 - Increased WMH in some studies
 - No features of DLB
 - No increases (yet) in tau PET



Stage 1

SNAP

Jack et al. Nature Rev Neurol 2016

Intermediate Risk of Cognitive Decline in MCI-SNAP

201 MCI from ADNI/EU Followed up to 5 yrs (mean 2.5) Decline:

Conversion to AD MMSE decline \geq 3 pts/yr MMSE \leq 24

	Crude		Adjusted	
	HR (95% CI)	р	HR (95% CI)	p
MCI A+N-	1.13 (0.49 - 2.62)	0.771	0.83 (0.34 – 2.09)	0.689
MCI SNAP	2.66 (1.20 - 5.93)	0.016	2.38 (1.00 – 5.62)	0.049
MCI A+N+	3.85 (1.91 - 7.78)	<0.001	3.36 (1.55 – 7.27)	0.002

Caroli et al. Neurology 2015

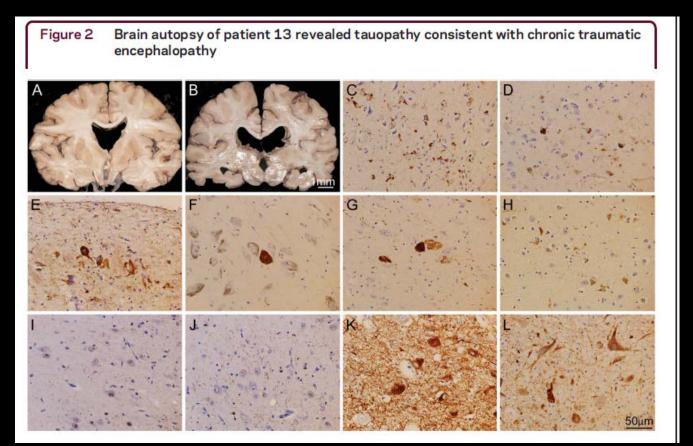
Neuropathological Diagnoses in Low Amyloid Clinical AD (N=50)

Table 4. Primary NP Diagnosis for No to Sparse CERAD Neuritic Plaque Density in *APOE4* Carriers and Noncarriers^a

	Braak Stages 0-11		Braak Stages III-IV	
Primary NP Diagnosis	APOE4 Noncarriers	APOE4 Carriers	APOE4 Noncarriers	APOE4 Carriers
Normal brain	3 (15.0) ^b	0	1 (7.7)	1 (20.0)
AD	0	2 (28.6)	1 (8.3)	1 (20.0)
AD abnormality present but insufficient for diagnosis	2 (10.0)	1 (14.3)	1 (8.3)	0
Lewy body disease	3 (15.0)	0	2 (15.4)	1 (20.0)
Vascular disease	5 (25.0)	0	2 (15.4)	1 (20.0)
FTLD	2 (10.0)	1 (14.3)	1 (8.3)	0
Hippocampal sclerosis	3 (15.0)	1 (14.3)	1 (8.3)	0
Rosenthal fiber encephalopathy	1 (5.0)	0	0	0
Nigral degeneration with focal tauopathy	1 (5.0)	0	0	0
Tauopathy NOS	0	1 (14.3)	0	0
Progressive supranuclear palsy	0	1 (14.3)	1 (8.3)	0
Senile dementia with tangles (tangle-only dementia)	0	0	1 (8.3)	1 (20.0)
FTD-NFT	0	0	1 (8.3)	0
Tauopathy/diffuse grain disease	0	0	1 (8.3)	0

Dementia onset late 70s, death mid 80s

ApoE4 – 26%

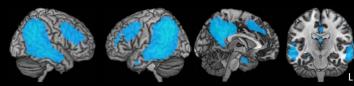

Most common diagnoses: AD (8), VaD (8), DLB (5), HS (5), normal brain (5) FTLD (4)

PART not diagnosed but 44% had Braak III/IV

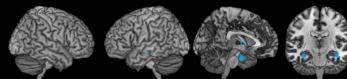
Monsell et al. JAMA Neurol 2015

CTE at Autopsy in Aβ-PET Negative AD

79 year-old retired NFL player with progressive memory loss

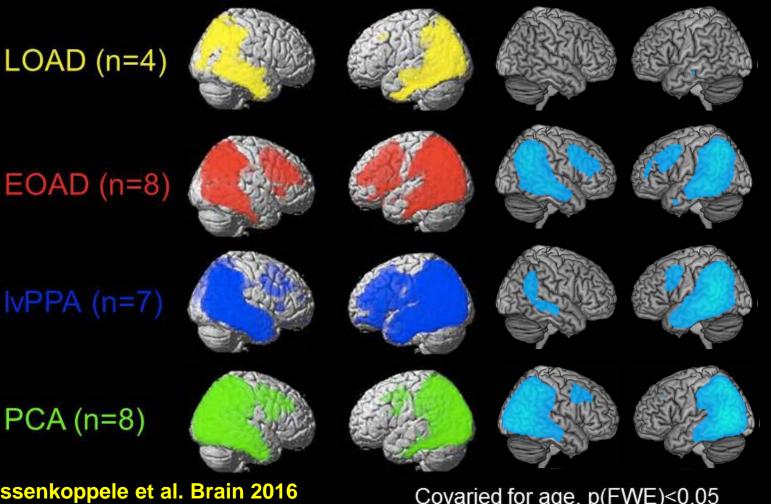


Gardner et al. Neurol Clin Pract 2015

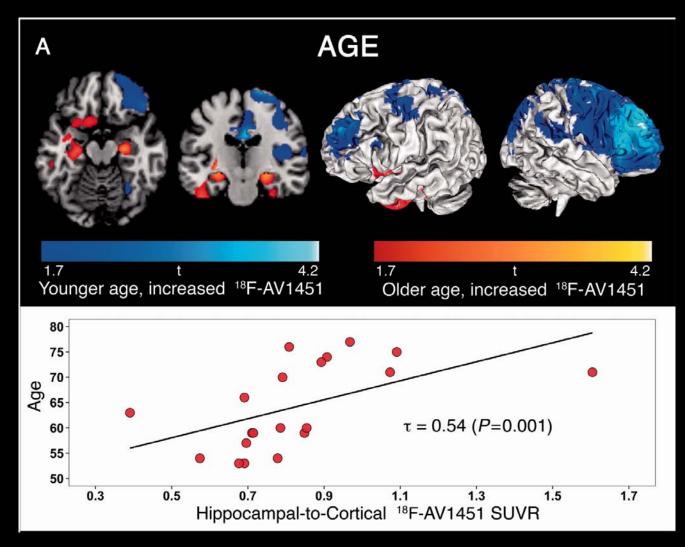

Heterogeneity of Aβ+ AD

FDG - PET

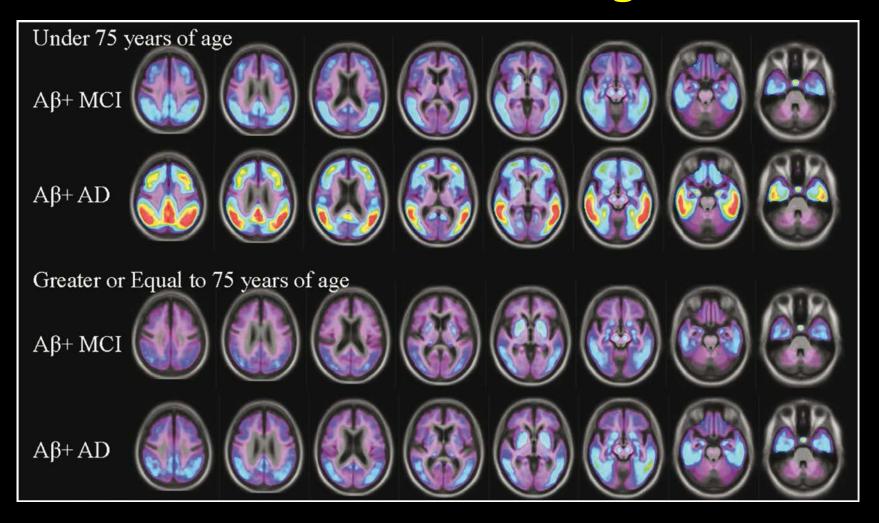
Controls > EOAD


Controls > LOAD

Lehmann et al. Brain 2013

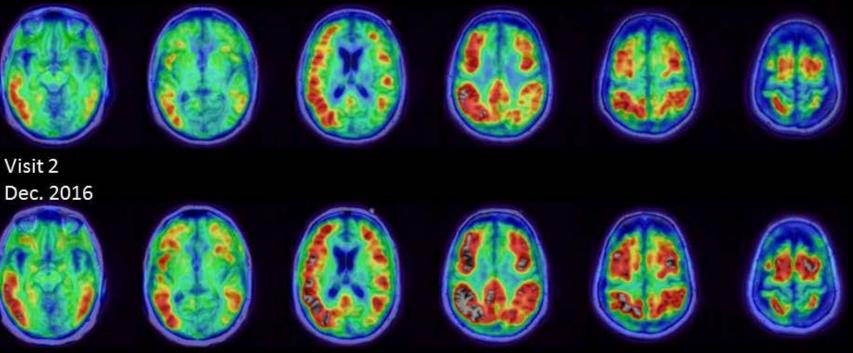

Tau PET Patterns Correlate with AD Phenotype

Ossenkoppele et al. Brain 2016 Xia et al. JAMA Neurol 2017 Day et al. Alz Dis Assoc Disord 2017


Covaried for age, p(FWE)<0.05

Age Moderates Tau Pattern in AD

Ossenkoppele et al. Brain 2016


Tau Burden in AD is Negatively Correlated with Age

Pontecorvo et al. Brain 2017

Longitudinal Tau PET in EOAD

Visit 1 Nov. 2015

Conclusions

- Biomarkers identify patients with non-Aβ pathologies mimicking clinical AD
 - Consistently ~15% of AD dementia
 - Associated with ApoE4 neg, older age, male
 - Better prognosis than $A\beta$ + (but not benign)
 - Likely represents a mix of neuropathologies
 - PART, CARTS, AGD, vascular, DLB
- Biomarkers can identify AD pathology as cause of heterogeneous syndromes
 - Early-onset AD critical and under-studied cohort in which to investigate mechanisms that drive heterogeneity
 - Dedicated study will require multi-site collaborations

UCSF-MAC

Bruce Miller Rik Ossenkoppele Nagehan Ayakta Viktoria Bourakova Alexandre Bejanin Leonardo laccarino **Renaud La Joie** Ashley Mensing **Julie Pham Daniel Schonhaut Richard Tsai Gautam Tammewar** Adrienne Visani Adam Boxer Lea Grinberg Anna Karydas **Robin Ketelle Joel Kramer** Zach Miller **Howie Rosen Miguel Santos** Salvatore Spina **Bill Seeley**

Mike Weiner

UC Berkeley/LBNL

Bill Jagust Susan Landau Jim O'Neill Kris Norton Mustafa Janabi Suzanne Baker Sam Lockhart

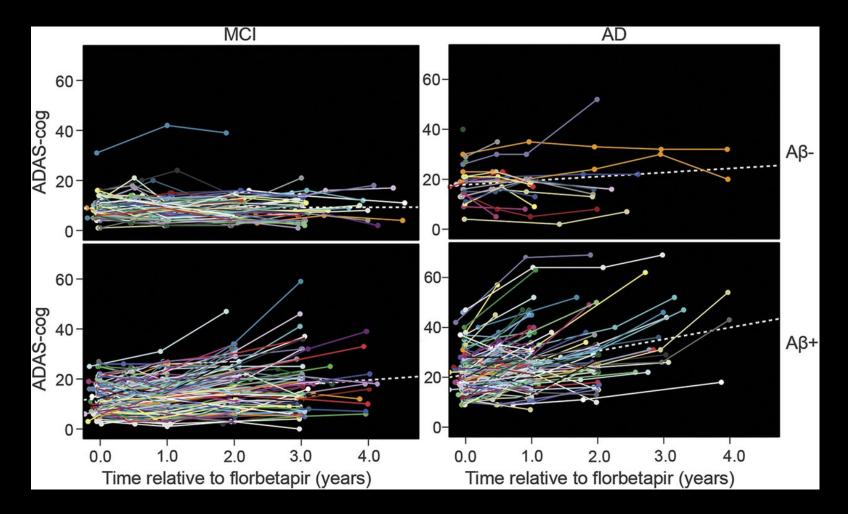
<u>Avid</u>

Mark Mintun Andrew Siderowf Marybeth Howlett

IDEAS Study team

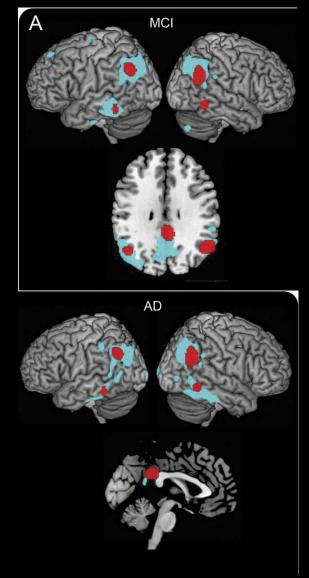
Lea GrinbergMaria CarrilloMarilu Gorno-TempiniConstantine GatsonisAnna KarydasBruce HillnerRobin KetelleBarry SiegelJoel KramerRachel WhitmerZach MillerCharlie ApgarHowie RosenLucy HannaMiguel SantosJim HendrixSalvatore SpinaCynthia Olson

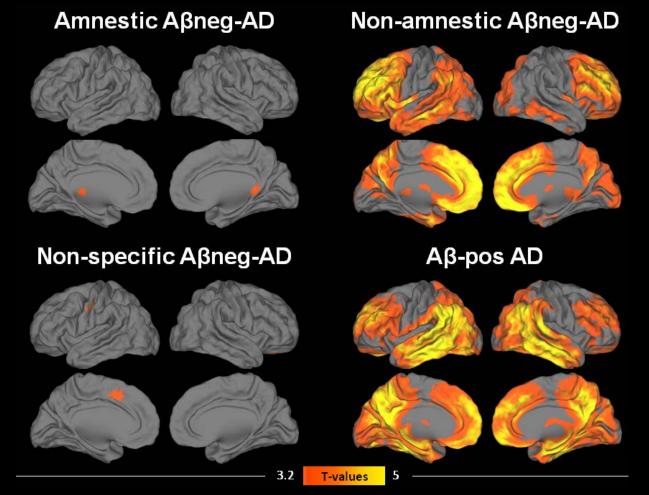
Acknowledgments


<u>Funding</u>

NIA R01-AG045611, P01-AG1972403, P50-AG023501 NINDS U54NS092089 Tau Consortium Michael J. Fox Foundation AFTD

Alzheimer's Association Avid Radiopharmaceuticals American College of Radiology French Foundation


Cognitive Trajectories By Aß Status

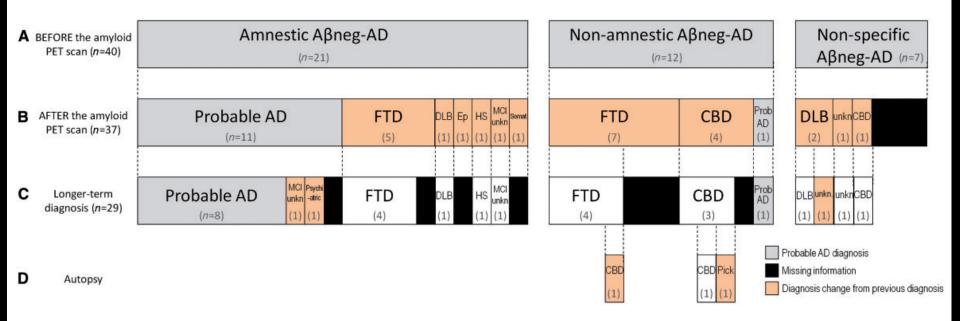

Landau et al., Neurology 2016

Characterization of Aβ- MCI/AD in ADNI

- Slightly older than $A\beta$ + (AD only)
 - Mean age 78 vs. 74
- Lower ApoE4
 - MCI: Aβ- 16% vs. Aβ+ 71%
 - AD: Aβ- 4% vs. Aβ+ 75%
- Better baseline cognition and function (MCI only)
- Slower cognitive decline (both groups)
- Higher prevalence of depression and hypertension
- Lower neurodegeneration biomarkers
 - CSF t-tau; p-tau, baseline MRI and FDG, longitudinal MRI

Atrophy in Aβ-Neg AD Dementia

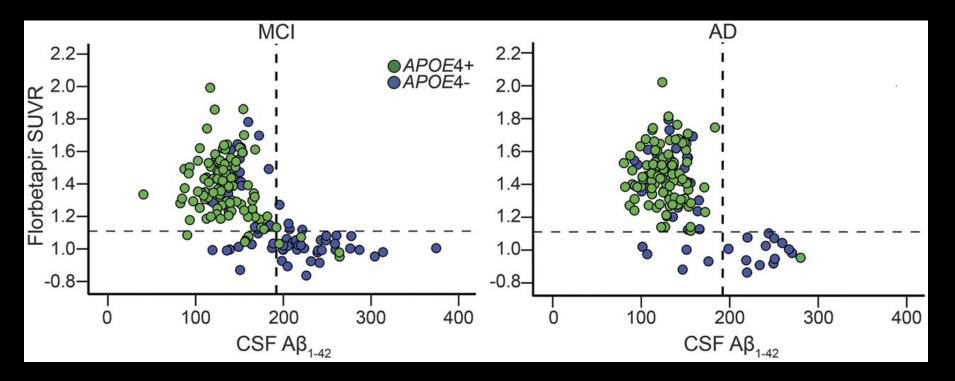
Chételat et al, in revision


Conclusions

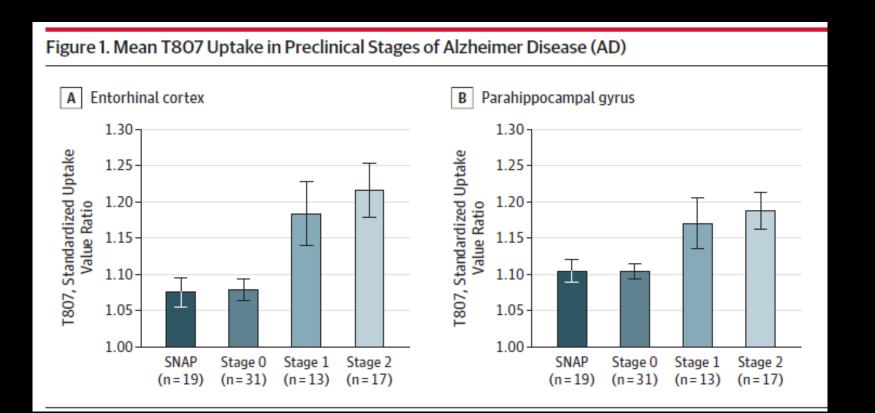
- SNAP is a biomarker-derived construct
 - Subject to limitations of biomarker distributions, thresholds and classifications
 - Current definition of "neurodegeneration" is cross-sectional, not longitudinal
- The biological substrate of SNAP is likely diverse
 - <u>Non-degenerative</u>: developmental differences, age, depression, hormonal (estrogen, cortisol), sleep, diabetes, genetics, etc.
 - <u>Degenerative</u>: vascular, DLB, PART, AGD, HS±TDP-43, FTLD

Conclusions

- The prognosis of SNAP differs by baseline cognitive status
 - <u>Healthy elderly</u>: relatively benign (simailar to A-N-)
 - <u>MCI</u>: intermediate between A-N- and A+N+
 - <u>Dementia</u>: majority show continued decline
- The substrate of SNAP likely differs by baseline cognitive status
 - <u>Healthy elderly</u>: greater contribution of nondegenerative factors (or very slow pathologies)
 - <u>Dementia</u>: primarily non-AD cortical/subcortical (nonamnestic) or limbic (amnestic) pathologies
 - <u>MCI</u>: mix of degenerative vs. non-degenerative


Outcomes in Clinical AD Dementia with Negative Amyloid PET

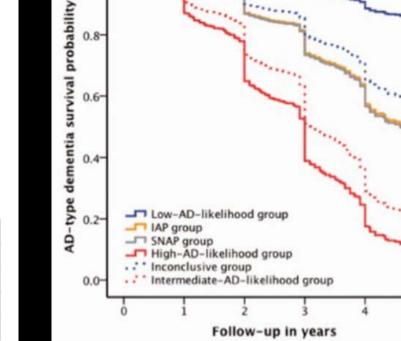
Amnestic: primary and predominant deficit in episodic memory <u>Non-amnestic</u>: primary and predominant deficit in language, visuospatial, or executive functions <u>Non-specific</u>: diffuse pattern of cognitive deficits


Chételat et al., Brain 2016

Agreement Between CSF Aβ₄₂ and Florbetapir PET

Landau et al., Neurology 2016

Early Tau PET Data Suggest SNAP ≠ PART


Mormino et al, JAMA Neurol 2016

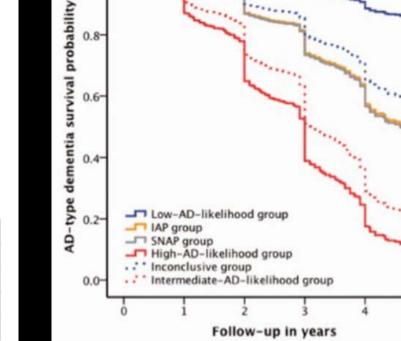
Intermediate Risk of Cognitive Decline in MCI-SNAP

1.0

	Crude		Adjusted	
	HR (95% CI)	р	HR (95% CI)	p
MCI A+N-	1.13 (0.49 - 2.62)	0.771	0.83 (0.34 – 2.09)	0.689
MCI SNAP	2.66 (1.20 - 5.93)	0.016	2.38 (1.00 – 5.62)	0.049
MCI A+N+	3.85 (1.91 - 7.78)	<0.001	3.36 (1.55 – 7.27)	0.002

Caroli et al, Neurology 2015

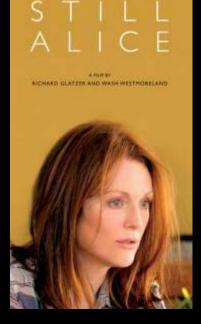
Vos et al, Brain 2015


NIA-AA criteria

Intermediate Risk of Cognitive Decline in MCI-SNAP

1.0

	Crude		Adjusted	
	HR (95% CI)	р	HR (95% CI)	p
MCI A+N-	1.13 (0.49 - 2.62)	0.771	0.83 (0.34 – 2.09)	0.689
MCI SNAP	2.66 (1.20 - 5.93)	0.016	2.38 (1.00 – 5.62)	0.049
MCI A+N+	3.85 (1.91 - 7.78)	<0.001	3.36 (1.55 – 7.27)	0.002


Caroli et al, Neurology 2015

Vos et al, Brain 2015

NIA-AA criteria

Early-Onset AD (Age ≤ 65)

- 5% of all AD patients = ~250,000 in U.S.
 Only ~5%-10% harbor APP/PSEN mutations
- Study mechanisms of heterogeneity and selective vulnerability in AD
 - Non-amnestic clinical presentations; focal cortical syndromes (IvPPA, PCA, fvAD)
- Identify novel genetic risk factors
 - Only ~50% carry ApoE4
 - Not represented in GWAS; will require targeted effort
- Employ biomarkers
 - Improve clinical diagnosis
 - Study mechanisms of "pure" AD: fewer co-pathologies
 - Under-represented in ADNI, not included in DIAN

