

Suzana Petanceska PhD Lorenzo Refolo PhD Laurie Ryan PhD **Division of Neuroscience**

NIA's Alzheimer's Disease Translational Research Program -2005-present

Goal: Develop a pipeline of funding opportunities to seed early drug discovery and preclinical drug development projects in academia and in the small business community and in doing so increase the number of drug candidates against a variety of therapeutic targets that can be clinically developed by industry or through various clinical trial programs at the NIA and NIH.

Educational Components of the AD Translational Research Program

- U13 Conference Grant to ADDF (NIA with co-funding from NINDS and ORD) to support a <u>Training Course/Annual Meeting on Drug Discovery for Neurodegeneration</u>
- **AD** Translational Research Investigators' Meetings
- **New training and career development programs in data science and drug discovery**

NIA and Trans - NIH Translational Programs*

*SBIR/STTR funding opportunities exist for the full spectrum of drug discovery/development

The Expanding Valley of Death

Industry, VC

U01 Preclinical Drug Development Program PAR 174 -2007-present-

-Supported with set-aside funding

-Applications reviewed at NIA by a Special Emphasis Panel

anti-inflammatory

multi-target

U01 Preclinical Drug Development Program PAR 174 -2007-present-

Milestone driven program

Allows for <u>2 entry points</u> and can be used for <u>small molecules and biologics</u>:

-early stage preclinical development through IND starting point: preclinical lead selection

-late stage preclinical development through Phase I trial starting point: fully optimized lead compound

Annual Direct Costs Budget Cap: \$1.0M

Project Duration: 3-5 years

LM11A-31 - first in class, small molecule modulator of the P75 Neurotrophin Receptor PI – Frank Longo MD and NeurotrophiX

The pre-clinical drug development and part of the IND-enabling studies for LM11A-31 were supported through NIA's AD Translational Research Program

The Phase II trial is being supported through NIA's Pilot Clinical Trials Program

LM11A-31

First Blueprint Neurotherapeutics Project to Complete Phase I Trial

Mark Gurney, PhD, Tetra Discovery Partners

Phosphodiesterase 4D (PDE4D) Allosteric Modulators for Treating Cognitive Impairment in AD

CENTRAL HYPOTHESIS

Negative allosteric modulators of PDE4D will improve cognition without the emetic side effects of active-site

inhibitors

BPN Achievement

- 1. Discovery and development of BPN14770, clinical candidate
- 2. Completion of Phase I clinical trial

Goal: To formulate a blueprint for a new integrated, translational research agenda that will enable the development of effective therapies (disease modifying and palliative) across the disease continuum for the cognitive as well as neuropsychiatric symptoms of Alzheimer's disease and to identify the resources, infrastructure and public private partnerships necessary to successfully implement this research agenda.

New NIA/NIH Funding Initiatives and Programs

- We are targeting the wrong pathophysiological mechanisms
- Drugs do not engage with the intended target
- Interventions are started at the wrong stage of the disease
- Lack of translatable pharmacodynamic biomarkers
- Poor predictive power of animal model preclinical efficacy testing

 Complexity of the physiologic response to therapeutic intervention

SYSTEMS APPROACHES FOR TARGET DISCOVERY AND VALIDATION

Suzana Petanceska PhD

Accelerating Medicines Partnership Alzheimer's Disease Program

https://www.nia.nih.gov/alzheimers/amp-ad

Government

AMP-AD Partners

National Institute on Aging

GEOFFREY BEENE

ALZHEIMER'S DISEASE - Target Discovery and Preclinical Validation Project

Discover and carry out preclinical validation of novel disease-relevant therapeutic targets by integrating the analyses of large-scale molecular data from human brain/blood samples with network modeling approaches and experimental validation.

Enable rapid and broad sharing of data.

ALZHEIMER'S DISEASE - Target Discovery and Preclinical Validation Project

□ The project is a consortium of 6 multi-institutional, multidisciplinary research teams supported by NIA grants.

□ The teams are applying cutting-edge systems and network biology approaches to integrate multidimensional human "omic" data (genomic, proteomic, metabolomic) from <u>~2,500 human brains/~1000 blood samples</u> from all stages of the disease with clinical and pathological data to:

- discover and select novel therapeutic targets for Alzheimer's disease
- gain a systems-level understanding of the gene, protein, and metabolic networks within which these targets operate
- evaluate their druggability in cell-based and animal models

ALZHEIMER'S DISEASE - Target Discovery and Preclinical Validation Project

ALZHEIMER'S DISEASE - Target Discovery and Preclinical Validation Project

Academic Teams	Broad- Rush	Mt Sinai	UFL/ISB /Mayo	Emory	Duke	Harvard/ MIT
Principal Investigators	De Jager, Bennett	Schadt, Zhang	Golde, Price, Taner	Levey	Kaddurah- Daouk	Yankner, Tsai
Human Data source	ROSMAP	Mt Sinai Brain Bank	Mayo Brain Bank	All	ADNI	ROSMAP
Molecular Data Types	RNAseq	RNAseq Whole exome seq	RNAseq	All Proteomics	Metabolomic	Txpn Factors
Target Identification	Bayesian networks	Bayesian networks	Innate Immunity Networks	Bayesian Networks	Systems analysis	REST
Preclinical Validation	iPSCs Cell lines	iPSC, drosophila, mouse	mouse	Mouse, cell culture, drosophila	NA	mouse

Data Enablement and Coordination of Collaborative Analyses: Sage Bionetworks, Principal Investigator – Lara Mangravite

Project Workflow

How Are We Doing This Together?

*AMP-AD Knowledge Portal – <u>https://www.synapse.org/#!Synapse:syn2580853/wiki/409840</u>

AMP-AD Knowledge Portal

	HUMAN TISSUE	Diagnosis	Assay		MODELS	Туре	Assay
	 Alzheimer's Disease Mild Cognitive Impairment Parkinson's Disease Amyothrophic Lateral Sclerosis Corticobasal Degeneration Frontotemporal Dementia Dementia with Lewy Bodies 	 Alzheimer's Disease Mild Cognitive Impairment Parkinson's Disease 	 RNAseq Gene Expression array miRNA array ChIPseq DNA Methylation array 		Drosophila	TAUTYROBPTREM2	 Proteomics RNAseq
		 Proteomics Confocal Imaging SNP genotypes Proteomics Whole Exome Seq 	1	Mouse	 APP TAU PSEN1 HDAC1 	RNAseq Gene Expression array Behavioral analysis	
	Visual Cortex	Alzheimer's Disease	Gene Expression ArraySNP genotypes	5.2	3	db/dbStroke	Electrophysiology
	Temporal Cortex	 Alzheimer's Disease Progressive Supranuclear Palsy Parkinson's Disease 	 RNAseq SNP genotypes	CELLUL - I	CELLULAR MODELS - Human - Rat	 iPSC iPSC derived organoids Microglia Macrophages Astrocytes APP/PSEN1, SNRNP70 transduced neurons SH-SY5Y 	 RNAseq ChIPseq ELISA (Aβ) Proteomics
	Cerebellum	 Alzheimer's Disease Progressive Supranuclear Palsy Parkinson's Disease 	• RNAseq				
	Superiour Temporal Gyrus	Alzheimer's Disease	 RNAseq Whole Exome Seq				
	Parahippocampal Gyrus	Alzheimer's Disease	• RNAseq				
	Serum	Alzheimer's DiseaseMild Cognitive Impairment	Metabolomics				

Religious Orders Study and Rush Memory and Aging Project

- Two cohort studies of aging and AD ongoing for 20+ years
- >3,000 older persons without [known] dementia from across the USA
- All agreed to annual detailed clinical evaluation for common chronic conditions of aging with detailed evaluation of risk factors, and blood donation
- All agreed to organ donation at death
- > 900 cases incident MCI
- > 700 cases incident AD dementia
- > 1,200 autopsies

RADC Research Resource Sharing Hub

https://www.radc.rush.edu

Query Frequency Reports

Request Data/Specimens

CONSORTIUM-WIDE MILESTONES

M1. Complete multi-omics (genomic, proteomic, metabolomic) data generation from human samples

M2. Develop project specific network models of AD

M3. Carry out comparative analysis across network models

M4. Target Nomination/Selection

M5. Characterize experimental validation models and assess their relevance to human disease through comparative analysis with human network models

M6. Consortium-wide preclinical validation of up to 6 novel targets

Target Discovery and Preclinical Validation Project Working Groups

Bioinformatics RNAseq Comparative Network Analysis eQTL Experimental Validation

AMP-AD RNASeq Reprocessing WG: Goals and Deliverables

- Enable joint analysis through uniform reprocessing to reduce technical variation across Human RNAseq datasets
- Meta-analysis to inform internal AMP-AD projects and support target selection processes
- Development of a standardized resource for external users

RNAseq reprocessing working group

29 members representing 5 AMPAD academic teams and all 4 industry partners Contacts: <u>kristen.dang@sagebase.org</u> & <u>thanneer.perumal@sagebase.org</u>

AMP-AD Mount Sinai Team Candidate Targets: preliminary list

1	RGS4	26	SV2B
2	SCN2A	27	RBFOX1
3	OLFM3	28	STAT4
4	SLC22A10	29	PAK1
5	ENAH	30	RASAL2
6	WWTR1	31	SYT1
7	LRP10	32	NCKAP1L
8	SYP	33	PARD3B
9	PCSK1	34	TLN1
10	KMO	35	NRXN1
11		36	TNFRSF1B
12		37	ARHGEF9
12		38	DUSP4
13	PLXNB1	39	DTX3L
14	DLGAP1	40	SNAP25
15	MOAP1	41	PLCB1
16	PRKCB	42	WDR49
17	VGF	43	NFIA
18	YAP1	44	ХК
19	GNA13	45	NAPB
20	TRIM56	46	MVP
21	KCNV1	47	GABRA1
22	STXBP5L	48	CD68
23	DOCK2	49	LAPTM5
24	GABRG2	50	ANGPT1
25	STAT3		

NOT JUST TARGETS

AMP-AD Emory/UCLA Team – PI: Allan Levey

Discovery of Novel Proteomic Targets for Treatment of Alzheimer's Disease

AMP-AD Emory/UCLA Team – PI: Allan Levey

Hub proteins from brain networks are found in human CSF and discriminate AD from control and PD patients. Hub proteins are defined as proteins with the highest intra-modular connectivity (i.e., proteins that are most central within the module) in the M1, M4 and M7 modules. Red symbols are proteins that were also identified in the CSF. AMP-AD Duke Team/AD Metabolomics Consortium PI: Rima Kaddurah-Daouk

ADNI I Baseline Datasets - Targeted and Non Targeted Metabolomics and Lipidomics Platforms

Broad biochemical coverage, high level of standardization!

AMP-AD Duke Team/AD Metabolomics Consortium PI: Rima Kaddurah-Daouk

Partial Correlation Network Analysis Suggests Evolution of Metabolic Changes in AD

Toledo et al. 2017

A collaboration between NIA and NINDS

M²OVE-AD

Molecular Mechanisms of the Vascular Etiology of Alzheimer's Disease

~\$35 million over 5 years to support 6 multi-institutional and cross-disciplinary research teams. The teams
will generate various "omics" data from brain tissue and peripheral fluids from individuals participating in
natural history or population studies and use network biology approaches to integrate these data with data
on neuroimaging, vascular physiology and cognitive measures. Predictions about molecular mechanisms
will be explored in various animal models (AD models and models of vascular/metabolic risk factors).

Goals and deliverables:

-rapid and broad sharing of data via the AMP-AD Knowledge Portal

-deeper understanding of the phenotypes of risk and the molecular mechanisms linking vascular risk factors, cerebrovascular disease and AD (tease out the impact of ApoE and sex-differences)

-new disease-relevant therapeutic targets for prevention

-molecular signatures that can be non-invasively measured and used for patient stratification.

ENABLING REPRODUCIBLE AND TRANSLATABLE PRECLINICAL EFFICACY TESTING

Lorenzo Refolo PhD

KEY FACTORS CONTRIBUTING TO THE POOR PREDICTIVE POWER OF PRECLINICAL EFFICACY TESTING STUDIES IN AD ANIMAL MODELS

- The limitations of transgenic animal models used in AD drug development
- Lack of translatable biomarkers
- Failure to match outcome measures used in clinical studies
- Lack of standard/rigor in study design and analysis of data
- Poor reproducibility of published studies and publication bias due to underreporting of negative results in the literature

Shineman et. al. 2011; Landis et al. 2012; Snyder et al. 2016

MODEL-AD Translational Center -\$25M over 5 years-

- Maximize human datasets to identify putative variants, genes and biomarkers for AD
- Generate, characterize and validate the next generation of mouse models of AD
- Develop a preclinical testing pipeline that implements rigorous study design and data analysis
- Make data and animal models available to the research community for use in therapy development

MODEL-AD Translational Center

Bruce Lamb - Indiana Univ. Paul Territo –Indiana Univ. Gareth Howell – Jax Labs Greg Carter – Jax Labs Lara Mangravite – Sage Bionetworks

Leading the search for tomorrow's cures

MODEL-AD Translational Center

-Organization and Workflow-

GETTING STARTED

Current AlzPED Member Organizations:

National Institute on Aging NIH Library Alzheimer's Drug Discovery Foundation Alzheimer Association

https://alzped.nia.nih.gov/

PURPOSE AND GOALS:

- Provide researchers and information scientists with a facile way to survey existing AD preclinical therapy development literature and raise awareness about the elements of rigorous study design and requirements for transparent reporting.
- Provide funding agencies with a tool for enforcement of requirements for transparent reporting and rigorous study design.

AlzPED Features:

- Searchable (by target, therapeutic agent, animal model, investigator) summaries of the experimental design and findings of published preclinical efficacy testing studies. available
- Citable and searchable summary reports of unpublished studies. *in development*
- Pre-registration of the study design for preclinical efficacy testing studies. *to be developed*

ALZHEIMER'S DISEASE - Biomarkers Project

A consortium of NIA-supported Phase II/III secondary prevention trials testing several anti-amyloid therapies. Through the AMP-AD partnership, imaging and fluid biomarker panels already included in these trials will be supplemented with tau PET imaging and novel fluid biomarkers.

The goal is to explore the utility of tau imaging (AV1451) and novel fluid biomarkers for tracking responsiveness to treatment and/or disease progression. Screening/baseline (pre-randomization) data from the trials will be made broadly available through the <u>Alzheimer Association's GAAIN collaborative platform</u> following completion of enrollment and QC.

Trial data (placebo and treatment arms) and biological samples will also be made available to qualified investigators after completion of the trials.

ALZHEIMER'S DISEASE - Biomarkers Project

• Anti-Amyloid treatment in Asymptomatic AD Trial (A4 Trial)

ADCS, Reisa Sperling - Harvard Medical School

THERAPEUTIC: Solanezumab

TARGET POPULATION: Cognitively normal older adults (age 65-85), positive for amyloid

Dominantly Inherited Alzheimer Network (DIAN) Trial

Randall Bateman - Washington University

THERAPEUTIC: Gantenerumab and Solanezumab

TARGET POPULATION: Individuals at risk for and with Dominantly Inherited Alzheimer's Disease

Alzheimer's Biomarker Consortium – Down Syndrome ABC-DS

- ~\$37 million over 5 years two multi-institutional, cross-disciplinary research teams
- Biomarkers will be explored to track AD-related changes in the brain and cognition for ~500 adults with Down syndrome (25-80+ years old)
- Measures include PET (amyloid and Tau), MRI, CSF and blood markers, DNA for GWAS, cognitive/memory tests
- Research teams are collaborating and harmonizing measures and procedures
- Data will be available in a public database, pre-publication; samples will be made available to qualified investigators

ABC-DS Research Teams

Benjamin Handen, Ph.D., Department of Psychiatry, University of Pittsburgh, heads a team that involves investigators and data from:

- Banner Alzheimer's Institute, Phoenix;
- Cambridge University, England;
- Laboratory of Neuro Imaging, University of Southern California, Los Angeles.

<u>Nicole Schupf</u>, Ph.D., Columbia University Medical Center, New York City, leads a team involving investigators at:

- University of California, Irvine;
- Kennedy Krieger Institute/Johns Hopkins University, Baltimore; Massachusetts General Hospital/Harvard University, Boston;
- University of North Texas Health Sciences Center, Fort Worth.

NEW FUNDING OPPORTUNITIES

<u>RFA AG17-054 Enhancing the Target and Biomarker Discovery Efforts of the AMP-AD and M²OVE-AD Consortia (R01)</u>

Submission deadline Feb 3, 2017

<u>RFA AG17-061 Interdisciplinary Research to Understand the Complex Biology of Resilience to</u> <u>Alzheimer's Disease Risk (R01)</u>

Submission deadline Feb 21, 2017

NEW FUNDING OPPORTUNITIES

PAR 17-032 Translational Bioinformatics Approaches to Advance Drug Repositioning and Combination Therapy Development for Alzheimer's Disease (R01) Active through 2020; three submission deadlines each year

PAR 17-033 Integrative Research to Understand the Impact of Sex Differences on the Molecular Determinants of AD Risk and Responsiveness to Treatment (R01) Active through 2020; three submission deadlines each year

PAR 17-052 Research Career Enhancement Award to Advance Therapy Development for Alzheimer's (K18)

Active through 2020; three submission deadlines each year

2012/2015 AD Research Summits: Some Key Recommendations

Recognize the heterogeneity and the multifactorial nature of the disease.

□ Support extensive molecular profiling of existing and establish new cohorts to fill the gaps in large-scale human data needed to build predictive models of disease and wellness

Employ new research paradigms such as systems biology and systems pharmacology.

Enable rapid and extensive sharing of data, disease models, and biological specimens.

Develop computational tools and infrastructure for storage, integration, and analysis of large-scale biological and other patient-relevant data.

Build new multidisciplinary translational teams and create virtual and real spaces where these teams can operate.

□ Support and enable open science.

Develop new precompetitive public-private partnerships.

Change academic, publishing, and funding incentives to promote collaborative, transparent, and reproducible research.

Engage patients, caregivers and citizens as direct partners in research.

National Plan to Address Alzheimer's Disease

U.S. Department of Health and Human Services

National Plan Goals:

1. Prevent and effectively treat Alzheimer's Disease by 2025.

2. Optimize care quality and efficiency.

3. Expand supports for people with Alzheimer's disease and their families.

4. Enhance public awareness and engagement.

5. Track progress and drive improvement.

Phase III Randomized, Double-blind, Placebo Controlled, Clinical Trials for AD

<u>Agent</u>	Target/Mechanism	<u>Outcome</u>
Atorvastatin	HMG CoA reductase	Negative
Dimebon	Mitochondrial function	Negative
Semagacestat	Gamma secretase	Negative
NSAIDs	Inflammation	Negative
Phenserine	Cholinesterase/Amyloid	Negative
Rosiglitazone	PPAR gamma agonist	Negative
Simvastatin	HMG CoA reductase	Negative
Tarenflurbil	Gamma secretase	Negative
Xaliproden	Serotonin antagonist	Negative
Bapineuzumab	amyloid beta (passive immunization)	Negative
Solanezumab	amyloid beta (passive immunization)	Negative*
IVIG	amyloid beta (passive immunization)	Negative

Failures due to lack of efficacy or unforeseen toxicity.

Laying the Foundation for Precision Medicine for AD

NIA ALZHEIMER'S TRANSLATIONAL RESEARCH PROGRAM LEADERSHIP:

Target Discovery and Validation Suzana Petanceska petanceskas@nia.nih.gov

Drug Discovery and Preclinical Drug Development Lorenzo Refolo PhD refolol@nia.nih.gov

Clinical Drug Development

Laurie Ryan PhD <u>ryanl@nia.nih.gov</u>