Nonlinear normative score calculators for NACC UDS3 cognitive tests

John Kornak (UCSF) + many more @ARTFL/LEFFTDS

Alzheimer's Disease Centers Program
October 20, 2018

NACC UDS of normal controls Weintraub et al. (2018)

- 3,461 Individuals (Caucasian subset with complete data)
- 29 ADCS
- Outcomes considered - Trail Making Test A \& B, Letter fluency F \& L \& , Category fluency - animals \& vegetables, Multilingual Naming test total, Number Span longest digit forward \& backward, Craft memory - immediate \& delay, Benson figure copy \& recall, Montreal Cognitive Assessment (or MoCA), Number Span forward \& backward total correct trials
- Assume data approximates distribution of "healthy controls" for each outcome
- Objective - to detect extremely "bad" scores relative to the control distribution - indicative of dementia (focus on FTD)

Basic "normative" Z-scores

Centered Trail Making Test B score

Consider a single neuropsychological test -- e.g. Trail Making Test B (TRAILB)

> Extreme Z-scores
> (e.g. > 2 or <-2) indicative of cognitive impairment

For a new individual: take score, subtract mean, divide total by SD, and compare with Z-score distribution

But... "normal scores" for younger people not same as for older

Linearly corrected Z-scores

- Linear approach: fit a linear regression to "adjust for" age, sex and education level -- Weintraub et al. (2018)
- To score a new individual - 2-stage process:

1. Adjust test score with fitted regression -- i.e. subtract predicted value for the individuals age, sex and education
2. Turn the adjusted test score into a z-score by dividing by linear regression residual standard deviation estimate

Linear regression for age

Linear regression for age - issue 1

FTD often occurs in this lower age range

Issue 1: Can we improve on the straight line fit with a nonlinear fit?

But, is nonlinear regression the right thing to do?

Is nonlinear regression the right thing to do?

Is nonlinear regression the right thing to do?

We do need to be careful when fitting nonlinear models that we do not "overfit"

Present solution: use shape constrained additive models (SCAMs)

- Generalized additive models (GAMs) - flexible "smooth" curves to fit data - Hastie \& Tibshirani (1986)
- Extend to shape constrained models (SCAMs) -- strictly increasing or decreasing fits - Pya \& Wood (2015)
- GAMs/SCAMs use a set of smooth "basis functions" (e.g. P-splines = penalized B-splines) - knitted together with "nice" mathematical properties form a smooth function
- Avoids overfitting by cross-validating - checks for a "genuinely improved fit" when adding complexity
- We use SCAM to regress on Age, Sex and Education

SCAM fitted model: TRAILB vs Age

Trail Making Test B vs. Age (Yrs)

SCAM fitted model: TRAILB vs ED.

Trail Making Test B vs. Education (Yrs)

Linear regression for age - issue 2

Issue 2: Account for increasing variance - SCAM fitted model: SD vs Age

Estimate standard deviation with age based on an 11 year window (blue line) and fit SCAM

Trail Making Test B vs. Age (Yrs)

Trail Making Test B SD vs. Age (Yrs)

SCAM fitted model: ANIMALS vs Age

SCAM fitted model: ANIMALS vs ED.

Category fluency - animals vs. Education (Yrs)

SCAM fitted model: ANIMALS SD vs Age

Category fluency - animals vs. Age (Yrs)

Category fluency - animals SD vs. Age (Yrs)

Procedure - look up table for TRAILB

	A	B	C	D	E
1	NACCAGE	EDUC	SEX	mean.adj	sd.adj
2	40	11	0	119.487918	7.55301009
3	41	11	0	119.500457	8.22482161
4	42	11	0	119.513383	8.89728201
5	43	11	0	119.526919	9.5707555
6	44	11	0	119.54129	10.2456063
7	45	11	0	119.556723	10.9221986
8	46	11	0	119.57344	11.6008966
9	47	11	0	119.591668	12.2820646
10	48	11	0	119.611631	12.9660668
11	49	11	0	119.634357	13.6532756
12	50	11	0	119.674358	14.3442042
13	51	11	0	119.757334	15.0394822
14	52	11	0	119.909324	15.7397425
15	53	11	0	120.156368	16.4456183
16	54	11	0	120.524504	17.1577428
17	55	11	0	121.039773	17.8767489
18	56	11	0	121.728213	18.6032698
19	57	11	0	122.615833	19.3379382
20	58	11	0	123.713499	20.0812027
21	59	11	0	124.992335	20.833029
22	60	11	0	126.417026	21.5933045
23	61	11	0	127.95226	22.3619164

For a new patient:

1. Obtain the patient's TRAILB score
2. Find the row in the table corresponding to the patients, age, education level and sex ($0=\mathrm{M}, 1=\mathrm{F}$) - extract value for mean.adj and sd.adj
3. Take the patient's TRAILB score, subtract mean.adj, then divide by sd.adj = patient's z-score

$$
z=\frac{x-\mu}{\sigma}=\frac{x-\text { mean. adj }}{\text { sd.adj }}
$$

Limitations

- Nonlinear models need more "manipulation" to fit
- Ad hoc SD windowing technique
- Non-normally distributed variation in some variables
- Caucasians only
- Based only on normative individuals

Never lose sight that ideal solution needs distribution of dementia group Z-scores

Optimal Z-score cut-point for classifying dementia depends on the distribution of the dementia Z -scores

Conclusions

- Nonlinear model fitting via SCAMs provides greater improvement in fit (over linear) for the relationship between the predictors (age, sex and education level) and neurocognitive outcomes in the control population.
- Nonlinear modeling thereby leads to adjusted Z-scores that are more representative of the departures from cognitively normal levels relative to their specific age, sex, and education level.

Thanks

> In particular, Julie Fields Walter Kremers
> Sara Farmer Hiroko Dodge Lilah Besser Brad Boeve Adam Boxer Howie Rosen

John Kornak ${ }^{1 *}$, Julie Fields ${ }^{2}$, Walter Kremers ${ }^{2}$, Sara Farmer ${ }^{2}$, Hilary W Heuer ${ }^{3}$, Leah Forsberg ${ }^{2}$, Danielle Brushaber ${ }^{2}$, Amy Rindels ${ }^{2}$, Hiroko Dodge ${ }^{3}$, Sandra Weintraub ${ }^{4}$, Lilah Besser ${ }^{5}$, Brian Appleby ${ }^{6}$, Yvette Bordelon ${ }^{7}$, Jessica Bove 8, Patrick Brannelly ${ }^{9}$, Christina Caso ${ }^{10}$, Giovanni Coppola ${ }^{7}$, Reilly Dever ${ }^{1}$, Christina Dheel ${ }^{2}$, Bradford Dickerson ${ }^{11}$, Susan Dickinson ${ }^{12}$, Sophia Dominguez ${ }^{8}$, Kimiko Domoto-Reilly ${ }^{10}$, Kelley Faber ${ }^{13}$, Jessica Ferrall ${ }^{14}$, Ann Fishman ${ }^{15}$, Jamie Fong ${ }^{1}$, Tatiana Foroud ${ }^{13}$, Ralitza Gavrilova ${ }^{2}$, Deb Gearhart ${ }^{2}$, Behnaz Ghazanfari ${ }^{16}$, Nupur Ghoshal ${ }^{17}$, Jill Goldman ${ }^{18}$, Jonathan Graff-Radford ${ }^{2}$, Neill Graff-Radford ${ }^{19}$, Ian M. Grant ${ }^{4}$, Murray Grossman ${ }^{8}$, Dana Haley ${ }^{19}$, John Hsiao ${ }^{20}$, Robin Hsiung ${ }^{21}$, Edward D. Huey ${ }^{18}$, David Irwin ${ }^{8}$, David Jones ${ }^{2}$, Lynne Jones ${ }^{17}$, Kejal Kantarci${ }^{2}$, Anna Karydas ${ }^{1}$, Daniel Kaufer ${ }^{14}$, Diana Kerwin ${ }^{22}$, David Knopman², Ruth Kraft ${ }^{2}$, Joel Kramer ${ }^{1}$, Walter Kukull ${ }^{23}$, Maria Lapid 2, Irene Litvan ${ }^{24}$, Peter Ljubenkov ${ }^{1}$, Diane Lucente ${ }^{11}$, Codrin Lungu ${ }^{25}$, Ian Mackenzie ${ }^{21}$, Miranda Maldonado ${ }^{7}$, Masood Manoochehri ${ }^{18}$, Scott McGinnis ${ }^{11}$, Emily McKinley ${ }^{26}$, Mario Mendez ${ }^{7}$, Bruce Miller ${ }^{1}$, Namita Multani ${ }^{16}$, Chiadi Onyike ${ }^{15}$, Jaya Padmanabhan ${ }^{11}$, Alexander Pantelyat ${ }^{15}$, Rodney Pearlman ${ }^{27}$, Len Petrucelli ${ }^{19}$, Madeline Potter ${ }^{13}$, Rosa Rademakers ${ }^{19}$, Eliana Marisa Ramos ${ }^{7}$, Katherine Rankin ${ }^{1}$, Katya Rascovsky ${ }^{8}$, Erik D. Roberson ${ }^{26}$, Emily Rogalski-Miller ${ }^{4}$, Pheth Sengdy ${ }^{21}$, Les Shaw ${ }^{8}$, Adam M. Staffaroni ${ }^{1}$, Margaret Sutherland ${ }^{25}$, Jeremy Syrjanen ${ }^{2}$, Carmela Tartaglia ${ }^{16}$, Nadine Tatton ${ }^{12}$, Joanne Taylor ${ }^{1}$, Arthur Toga ${ }^{28}$, John Trojanowski ${ }^{8}$, Ping Wang ${ }^{1}$, Bonnie Wong ${ }^{11}$, Zbigniew Wszolek ${ }^{19}$, Brad Boeve ${ }^{2}$, Adam Boxer ${ }^{1}$, and Howard Rosen ${ }^{1}$, on Behalf of the ARTFL/LEFFTDS Consortium
${ }^{1}$ UCSF, San Francisco, CA, USA
${ }^{2}$ Mayo Clinic Rochester, MN, USA
${ }^{3}$ Oregon Health and Science University, OR, USA and University of Michigan, MI, USA
${ }^{4}$ Northwestern University, Chicago, IL, USA
${ }^{5}$ Florida Atlantic University, Boca Raton, FL, USA
${ }^{6}$ Case Western Reserve University, Cleveland, OH, USA
${ }^{7}$ Department of Psychiatry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
${ }^{8}$ University of Pennsylvania, Philadelphia, PA, USA
${ }^{9}$ Tau Consortium, Rainwater Charitable Foundation, Fort Worth, TX, USA
${ }^{10}$ University of Washington, Seattle, WA, USA
${ }^{11}$ Harvard University/MGH, Boston, MA, USA
${ }^{12}$ Association for Frontotemporal Degeneration, Radnor, PA, USA
${ }^{13}$ National Cell Repository for Alzheimer's Disease (NCRAD), Indiana University, Indianapolis, IN, USA
${ }^{14}$ University of North Carolina, Chapel Hill, NC, USA
${ }^{15}$ Johns Hopkins University, Baltimore, MD, USA
${ }^{16}$ University of Toronto, Toronto, Ontario, Canada
${ }^{17}$ Washington University, St. Louis, MO, USA
${ }^{18}$ Columbia University, New York, NY, USA
${ }^{19}$ Mayo Clinic, Jacksonville, FL, USA
${ }^{20}$ National Institute on Aging (NIA), Bethesda, MD, USA
${ }^{21}$ University of British Columbia, Vancouver, British Columbia, Canada
${ }^{22}$ UTSW, Dallas, TX, USA
${ }^{23}$ National Alzheimer Coordinating Center (NACC), University of Washington, Seattle, WA, USA
${ }^{24}$ UCSD, San Diego, CA, USA
${ }^{25}$ National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
${ }^{26}$ University of Alabama at Birmingham, AL, USA
${ }^{27}$ Bluefield Project to Cure FTD, San Francisco, CA, USA

Funding Acknowledgements

- Study Supported by: U01 AG045390 (PIs Bradley F. Boeve and Howard J. Rosen), U54 NS092089 (PI Adam Boxer, MD) and R01 EB022055 (PI John Kornak, PhD).
- The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI M. Marsel Mesulam, MD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD), P50 AG016573 (PI Frank LaFerla, PhD), P50 AG005131 (PI James Brewer, MD, PhD), P50 AG023501 (PI Bruce Miller, MD), P30 AG035982 (PI Russell Swerdlow, MD), P30 AG028383 (PI Linda Van Eldik, PhD), P30 AG053760 (PI Henry Paulson, MD, PhD), P30 AG010124 (PI John Trojanowski, MD, PhD), P50 AG005133 (PI Oscar Lopez, MD), P50 AG005142 (PI Helena Chui, MD), P30 AG012300 (PI Roger Rosenberg, MD), P30 AG049638 (PI Suzanne Craft, PhD), P50 AG005136 (PI Thomas Grabowski, MD), P50 AG033514 (PI Sanjay Asthana, MD, FRCP), P50 AG005681 (PI John Morris, MD), P50 AG047270 (PI Stephen Strittmatter, MD, PhD).

