Genome clences

UNIVERSITY J WASHINGTON | SCHOOL OF MEDIC IHE o,

New Proteomics Strategies for
Studying Alzheimer's and
Related Dementias

MacCoss, Hoofnagle, and Montine Labs



Projects Related to Signatures of AD and Related Dementias

* Neuropathological assessment of resilience in post-mortem brain

o Can we have a molecular assay that can distinguish between:
— Different AD genetic risk
— Associated co-morbities

— Resilience to AD neuropathologic change

o Can we develop a proteomics assay to use as a replacement of traditional
histopathological assessment.

* Cerebral spinal fluid assay that can reflect brain pathophysiology

o Can we expand beyond the use of CSF AB,,, tau, and P181-tau, and PET imaging for
amyloid and pathologic tau protein




So what do we need?

We need methods that sample the same peptides in all samples

We need methods where the change in signal reflects the change in
qguantity

We need methods where we can get the same signal despite
differences in sample preparation, instrument platform, etc...

We need to recognize that changes can occur with individual peptides
and not the overall gene product.

We need a large sample size.
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Mass Spectrometry Data Acquisition Strategies Used in Proteomics
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Mass Spectrometry Data Acquisition Strategies Used in Proteomics
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Mass Spectrometry Data Acquisition Strategies Used in Proteomics

Data Dependent Data Independent Parallel Reaction
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Improving Precursor Selectivity
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Improving Precursor Selectivity
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Separating Detection from Quantitation
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So what do we need?

* We need methods that sample the same peptides in all samples

*  We need methods where the change in signhal reflects the change in
qguantity

* We need methods where we can get the same sighal despite
differences in sample preparation, instrument platform, etc...

* We need to recognize that changes can occur with individual peptides
and not the overall gene product.

* We need a large sample size.




Are the Measurements Quantitative or
Differential?

Can we define LOQ and LOD for many peptides at
once?



Assessment of LOD and LOQ

LOQ 4
LOD
P - = =
| ®/ o
© | S
C
o | @
0p] | °
ey ® Building on:
| ¢ Galitzine C et al, MCP 2018

quantity



Matched Matrix Dilution Curves
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Not all Peptides are Equal Quantitative Proxies for a Protein
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Not all Peptides are Quantitative

Cerebrospinal fluid (CSF) method development using DIA-MS
r p e A r N r N e N

8,698 6,000 3,183 1,206

peptides in peptides in wide- peptides with peptides unique
narrow-window window reference defined LOQ to a protein
GPF reference

Compile targets
into final assay

(2,994 protein groups) (2,168 protein groups) (1,303 protein groups) (402 proteins)

. J \. J . y, \_ y, \. y,
100
o
S » 80
0 ©
©.c 60
3 8 40  Detectable Peptides
T3 Quantitative Peptides
O o 20
O
0

oo oo oo o oo n"\a ol oo oo oo
S ST S S S @055@&

Ranked Library Peptide Intensity



So what do we need?

* We need methods that sample the same peptides in all samples

* We need methods where the change in signhal reflects the change in
guantity

°*  We need methods where we can get the same signal despite
differences in sample preparation, instrument platform, etc...
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and not the overall gene product.
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Comparing Signal Intensities Between
Labs, Instrument Platforms

Signal Calibration in Proteomics?



Peak area measurements should scale with the amount of peptide in

the sample
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Measurements on different platforms are not
measured on the same scale
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Between Batch/Platform/Lab Signal Calibration

Purpose of signal calibration
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Data harmonization between days, instrument
platforms, and laboratories
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Aliquots of reference material are prepared together
with each experimental batch
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Data harmonization between days, instrument
platforms, and laboratories
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Signals measured on different platforms are often on
different scales
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External reference calibration places different
platforms on the same scale
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Calibration to the same reference minimizes
quantitative variance
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Calibration to the same reference minimizes
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quantitative variance
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Calibration to the same reference minimizes
quantitative variance
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Calibration to the same reference minimizes
quantitative variance
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So what do we need?
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Different Peptides Reflect Different Proteoforms
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Different Peptides Reflect Different Proteoforms
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Shift from a Triangular Process to a Rectangular
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Measuring More Analytes Requires Measuring More Samples

Effect size multiplier
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Conclusions

Data independent acquisition offers systematic sampling over
traditional discovery proteomics.

We have the ability to perform DIA with selectivity of 50% the
precursor isolation window size across the entire m/z range.

Dynamic range and sensitivity that approximates PRM but is
comprehensive

Signal can be calibrated between labs and instrument platforms
using a common external reference sample

Stop doing protein roll up for bottom-up proteomics.

Proteomics assays that measure lots of peptides require lots of
samples.
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