FY19 Budget Status – Funding Increases Across the Board

NIA Appropriations, Fiscal Years 2013-2019

NIA Appropriations and President's Budget Fiscal Years 2011-2020

Allocations for Competing Research Grant Awards, FY 2019

CSR-reviewed Research Applications						
	General Pay line, <\$500k	General Pay line, =>\$500k	AD/ADRD pay line, <\$500k	AD/ADRD pay line, =>\$500k		
All applications except as noted below	15	12	28	25		
N.I. R01s	18	15	31	28		
E.S.I. R01s	20	17	33	30		

New investigator: An applicant who has not received a prior R01 award or its equivalent. Early-Stage Investigator: A new investigator who is within 10 years of finishing research training. First-time renewing; A former new or early-stage investigator's first renewal application when the investigator has no other NIH grant support.

ADRD: Research on Alzheimer's disease and on Alzheimer's-related Dementias

NIH National Instit

FY 2019 Pay Lines (PPG's, others)

NIA-reviewed Applications

	General pay line	AD/ADRD pay line
Program projects (PO1)	20	38
Other NIA- reviewed research	20	38

FY 2019 Pay Lines (Training)

Training-related Applications

	General pay line	AD/ADRD pay line
Training grants (T32, T35)	21	35
Career awards	21	28
Fellowships	28	32

RPG's success rates over time NIA vs NIH

Multi-IC Collaboration: AD/ADRD supplements

25 ICs and Offices participated in the FY18 notice for AD/ADRD supplements

Recruitment to a Growing AD/ADRD Workforce

~1/4 of NIA's Alzheimer's and related dementias awardees from Fiscal Year 2015-2018 were either <u>new or early</u> <u>stage</u> investigators

Information about how NIH promotes a diverse scientific research workforce

Learn how diversity supports our mission, find opportunities to participate in diversity programs, meet researchers, and more. Whether you are a science student, trainee, faculty member, or someone who is interested in diversity programs, you can find what you are looking for *here*.

Questions, comments, and suggested resources should be directed to extramuraldiversity@mail.nih.gov, or use the Contact Us link below.

Acknowledgement: Jackson State University NIH SEPA Program R25RR020405 and Faces of Science, Inc. Biomedical Faces of Science, 3,899,144, Jan. 4, 2011.

~1/3 of NIA's Alzheimer's and related dementias awardees were <u>new to the field</u>

New format for Alzheimer's Disease initiatives

- We changed how we advertise many initiatives!
- Parent FOAs (R01 and R21)
- Notices of Special Interest
- <u>PAR-19-070/PAR-19-071</u>: Research on Current Topics in Alzheimer's Disease and Its Related Dementias (R01/R21 Clinical Trial Optional)
- Include the notice you are replying to in <u>Field 4.b</u> on the SF 424 Form!

PAR-19-070/PAR-19-071 examples of recently expired FOA's re-issued as NOSI

- Include the notice you are replying to in Field 4.b on the SF 424 Form! •
- NOT-AG-18-053 : Major Opportunities for Research in Epidemiology of Alzheimer's Disease and Related Dementias and Cognitive Resilience (Formerly PAR-15-356). Dallas W. Anderson; dallas.anderson@nih.gov, Jonathan W. King; kingjo@nia.nih.gov
- NOT-AG-18-052: Capturing Complexity in the Molecular and Cellular Mechanisms Involved in the Etiology of Alzheimer's Disease / Deciphering the Glycosylation Code of Alzheimer's Disease (Formerly PAR-15-358), Austin Yang; yangj13@mail.nih.gov
- NOT-AG-18-051: Understanding Alzheimer's Disease in the Context of the Aging Brain (Formerly PAR-15-357), Brad Wise; WiseB@mail.nih.gov
- NOT-AG-18-048: Common Mechanisms and Interactions Among Neurodegenerative Diseases • (Formerly PAS-17-028), jhsiao@mail.nih.gov
- NOT-AG-18-048: Novel Approaches to Characterizing and Diagnosing Alzheimer's Disease and • Related Dementias (Formerly PAR-15-359), John Hsiao; jhsiao@mail.nih.gov
- NOT-AG-18-047: Health Disparities and Alzheimer's Disease (Formerly PAR-15-349), Cerise Elliott; • elliottce@mail.nih.gov

Some NIA-AD Research Priorities

Alzheimer's Disease initiatives for FY2020

ACCELERATING MEDICINES PARTNERSHIP (AMP)

ALZHEIMER'S DISEASE

٠

٠

٠

٠

٠

- Target Discovery and Preclinical Validation Project

NIA Program Director: Suzana Petanceska and Laurie Ryan

on Aging

Neuron 99, 1-19, July 11, 2018 @ 2018 Elsevier Inc. 1

Neuron Article

Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus

Ben Readhead,^{1,2,3,4,17} Jean-Vianney Haure-Mirande,^{5,17} Cory C. Funk,⁶ Matthew A. Richards,⁶ Paul Shannon,⁶ Vahram Haroutunian,^{7,6} Mary Sano,^{5,15} Winnie S. Liang,^{9,10} Noam D. Beckmann,^{1,2} Nathan D. Price,⁶ Eric M. Reiman,^{3,0,11,12} Eric E. Schadth.^{1,2,13} Michaelle E. Ehrlich,^{1,2,5,14} Sind, Gandy,^{5,3,15,16,17}, rad Joel T. Dudley^{1,2,3,4,17,18,*} -RNA sequencing of 4 brain regions in 600 samples of postmortem brain (AD and Control) in early onset and AD progression, and then subsequent validation with another 900 RNA samples from three other cohorts indicating abundance of HHV-6A and HHV-7 nucleotides and pathways in AD

-Also regulatory relationship linking viral abundance and modulators of APP metabolism – APBB2, APPBP2, BIN1, BACE1, CLU, PICAL and PSEN1

CelPress

PAR-19-070/PAR-19-071: Alzheimer's Disease NOT-AG-19-012 : Infectious Etiology of Alzheimer's Disease (R01 only)

Understanding AD in the context of Aging

National Institute on Aging

Some NIA-AD Research Priorities

NIA-AD clinical trials pipeline toward 2025

NIA Program Directors: Laurie Ryan, Zane Martin, Larry Refolo

	Drug Discovery		Drug Development		Early Stage Clinical Trials		Late Stage Clinical Trials
Kov	P8 (APP) (Ni	(NAC)-loaded DTDRN tric oxide, ROS, IL1β, TN	NPT-440-1 (Amyloid Ion Channels)	NLRP3 inflammasome inhibitors	Posiphen (APP)	Vitamin D (Vit D receptor)	Solanezumab (Anti-Aß antibody)
Key	GAMMA-AApeptides	Nerve Growth Factor	Tropisetron (F03)	CRAC Channel	NGP 555	Valacyclovir	TBD
Αβ	(Aβ aggregation)	(TrkA receptor)	(APP)	inhibitors	(γ-Secretase)	(Anti-viral)	(BACE1)
Tau	CLR01 (Aβ clearance)	TrkB/TrkC ligand	THPI-244 (APP)	AAV2-BDNF (TrkB receptor)	ACI-24 (Aβ immunotherapy)		Gantenerumab (Anti-Aβ antibody)
Neurotransmitter Receptor	CLR02 (Aβ clearance)	BDNF-Nanoparticles (TrkB receptor)	BNC-1 (γ-Secretase)	PEG-HCCs (Mitochondria)	CT1812 (Sigma-2 receptor)		CAD106 (Anti-Aβ antibody)
Inflammation	Caspase-2 inhibitors	luman Neural Stem Cells	Tricyclic Pyrones (γ-Secretase)	EAAT2 activators	PTI-125 (Filamin A scaffold)		CNP520 (BACE1)
Growth Factors and Hormones	HDAC6I SW-100 (Histone Deacetylases)	Interneuron Transplants	Amytrapper (Aβ clearance)	Tacrolimus (Calcineurin)	Nicotine (Nicotinic receptor)		Crenezumab (Anti-Aβ antibody)
Neurogenesis Metabolism	Inhibitors Tau oligomer formation	Parkin activators	ACU193 (Aβ immunotherapy)	CRAC Channel Inhibitors	LM11A-31 75 neurotrophin recepto		Antihypertensive medicines
and Bioenergetics Synaptic Plasticity/	Compounds increase I Tau turnover	Hexa- & Octadecanamide (PPARγ)	AV-1959 E (Aβ immunotherapy)	enzothiazole Amphiphile (Spinogenesis)	T3D-959 (PPARγ)		Aspirin OX-1 receptor on plateler
Neuroprotective Oxidative Stress	Single domain Tau antibodies	Incretin receptor agonist	GISMO (Glycosaminoglycan)	Ryanodine receptor Modulatory compounds	Intranasal Insulin (Insulin receptor)		
ApoE, Lipids	pT231-Tau polyclonal antibodies	Cyclin A2 agonists	CT0093 (Sigma-2 receptor)	Furoxans (Cyclic GMP)	Benfotiamine (Synthetic Thiamine)		
Vascular	GMF-Specific shRNA (Glia Maturation Factor)	igma-1 Receptor agonist	γ-Secretase Modulators	1,2,4-triazoles (Somatostatin receptor)	Nicotinamide Riboside (Mitochondria)		
Proteostasis/ Proteinopathies	EP2 receptor antagonists	Compounds increase Klotho expression	Anti-Pyroglutamate-3 Αβ (Anti-Aβ antibody)	A03 (ApoE)	Levetiracetam naptic Vesicle Glycoprot		
Multitarget	CK2 inhibitors A	c <mark>tivators of Nrf2 translati</mark> on	Cdk5 inhibitors	TFEB activators	BPN14770 (Phosphodiesterase 4D)		
Other	CD33 AD SNP mimic	Αβ12-28Ρ (ApoE)	EGCG (Dyrk1a)	Nomethiazoles (GABA, NO)	Allopregnanolone (GABA, PXR)		
	NSAIDs (Kynurenine Pathway) a	ApoE-antibodies and ntisense oligonucleotide	Epothilone D (Microtubules)	JNK3 inhibitors	2-hydroxybenzylamine (γ-ketoaldehyde)		
	(NAC)-loaded DTDRN tric oxide, ROS, IL1β, TN	po Al mimetic peptide (5/ ^τ α) Apo Al-HDL	YQW-036 (NMDA receptor)		Glutathione (Glutathione S-transferase)		
	Microglial Kv1.3 Channel Blocker	Proteosome agonists	MW151 (Cytokines)		Gemfibrozil (Lipid)		
	CX3CR1 Agonist	Syn aggregation inhibitors	Difluoromethylornithine Ornithine Decarboxylase		DHA (Lipid)		
	CD59	LISPRO	PD2024		Candesartan		
	(Complement)	(GSK3β, Inflammation)	(TNFα)		(Angiotensin II receptor)		
	TREM2 Modulator	IGP001 (JNK)	Lenalidomide (TNFα)		Lithium		

Valacyclovir clinical trial in AD

PI: Devanand, Davangere P Institution: Columbia University/ New York State Psychiatric Institute

Rationale: Infections from herpes virus including HSV1 (oral herpes) and HSV2 (genital herpes) have been implicated in etiology for AD.

Anti-HSV drugs reduce A β and p-tau accumulation in infected mouse brains.

Study Design (groups, doses): Oral Valacyclovir at 2 g to 4 g per day, randomized, double-blind, 18-month Phase II, will involve **130 mild AD patients (65 valacyclovir, 65 placebo)** who test positive for herpes simplex virus-1 (HSV1) or HSV2

Outcome measures include:

- Change in Alzheimer's Disease Assessment Scale Cognition (ADAS-COG11, modified version) scores from baseline to 78 weeks
- Pet amyloid scan with 18F-Florbetapir and with 18F-MK-6240[Time Frame: Week 0, Week 78]
- Change in Alzheimer's Disease Cooperative Study Activities of Daily Living (ADCS-ADL)

Study duration: 78 weeks study Study start date to estimated end date: Feb 2018 – Aug 2022

Status of NIA-AD Phase II/III clinical trials toward 2025

Improving data sharing efforts

AD/ADRD Care and Services Summit (II) March 24-25, 2020 Natcher Conference Center Bethesda, MD

Concept Approvals:

https://www.nia.nih.gov/approved-concepts

General FOAs: https://www.nia.nih.gov/research/funding

Alzheimer's Disease and Related Dementias FOAs: http://www.nia.nih.gov/AD-FOAs

Follow our "Inside NIA" blog: https://www.nia.nih.gov/research/blog

Valacyclovir clinical trial in AD

PI: Devanand, Davangere P

Institution: Columbia University/ New York State Psychiatric Institute

Rationale: Infections from herpes virus including HSV1 (oral herpes) and HSV2 (genital herpes) have been implicated in etiology for AD.

- HSV1 and HSV2 DNA are present in amyloid plaques. HSVs are reported to trigger amyloid aggregation, and an HSV1 reactivation is associated with tau hyperphosphorylation. Anti-HSV drugs reduce Aβ and p-tau accumulation in infected mouse brains.

- Clinically, after the initial oral infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and recurrent reactivation may produce neuronal damage and AD pathology. Clinical studies show cognitive impairment in HSV seropositive patients, and antiviral drugs show strong efficacy against HSV.

Study Design (groups, doses): Oral Valacyclovir at 2 g to 4 g per day, randomized, doubleblind, 18-month Phase II, will involve **130 mild AD patients (65 valacyclovir, 65 placebo)** who test positive for herpes simplex virus-1 (HSV1) or HSV2

Outcome measures include:

- Change in Alzheimer's Disease Assessment Scale Cognition (ADAS-COG11, modified version) scores from baseline to 78 weeks
- Pet amyloid scan with 18F-Florbetapir and with 18F-MK-6240[Time Frame: Week 0, Week 78]
- Change in Alzheimer's Disease Cooperative Study Activities of Daily Living (ADCS-ADL)

Study duration: 78 weeks study Study start date to estimated end date: Feb 2018 – Aug 2022

