#### Biological networks in Alzheimer's disease

Tracy Young-Pearse Molecular biology Shinya Tasaki Sara Mostafavi Systems biology Robert Dawe Neuroimaging Chris Gaiteri Glue















# Why networks?



Literature-based connections surround classic AD targets, studied for 30 years.

There are few connections among molecules with novel AD findings.

# Why networks?



EPHA3

surround classic AD targets, studied for 30 years.

There are few connections among molecules with novel AD findings.

Data-driven connections can be found for ADrelated molecules that are more recently of

# Why networks?



## What does coexpression provide?

#### Several mechanisms generate coexpression networks



## What does coexpression provide?

#### Several mechanisms generate coexpression networks



# What does coexpression provide?

#### Several mechanisms generate coexpression networks



# Summarizing RNAseq into molecular systems

#### 24 of 47 (~50%) modules are enriched for biological function (0.05 FDR)

| module id | # genes | # enriched<br>functions | Representative function                                            |
|-----------|---------|-------------------------|--------------------------------------------------------------------|
| 9         | 243     | 112                     | Regulation of transcription                                        |
| 10        | 138     | 10                      | RNA processing                                                     |
| 14        | 347     | 93                      | Mitochondrial part/function                                        |
| 16        | 352     | 137                     | Neuronal/Synapse part                                              |
| 23        | 251     | 18                      | Neuronal/Synapse part                                              |
| 106       | 489     | 19                      | Mitochondrial part/function                                        |
| 107       | 416     | 72                      | Membrane proteins/Neuronal System                                  |
| 109       | 390     | 71                      | Cell cycle damage response/Insulin signaling<br>pathway/Proteasome |
| 110       | 348     | 6                       | Cytoskeleton/protein motor (astrocytes)                            |
| 111       | 244     | 70                      | Transcription                                                      |
| 112       | 64      | 59                      | Cell membrane/Signaling peptide                                    |
| 113       | 313     | 307                     | Metabolism of protein                                              |
| 114       | 276     | 17                      | Immune response (NFKB pathway)                                     |
| 115       | 232     | 503                     | Immune response (IFN response)                                     |
| 116       | 224     | 432                     | Immune response (microglia)                                        |
| 117       | 409     | 134                     | Protein folding/unfolded protein response                          |
| 118       | 405     | 140                     | Transcription/Protein metabolism/Immune                            |
| 119       | 317     | 58                      | Transcription                                                      |
| 121       | 403     | 42                      | Acetylation/Nucleic binding                                        |
| 123       | 317     | 153                     | Mitochondrial function                                             |
| 126       | 356     | 243                     | Mitochondrial function                                             |
| 187       | 30      | 10                      | Synaptic transmission                                              |



What are the associations of gene expression and AD phenotypes?













# How do we prune out extra links?



## How do we prune out extra links?



### Testing network predictions



## **Preliminary IPSC Results**



Correlations with Cognition

## **Preliminary IPSC Results**



**Conclusion:** Overall similarity in the disease associations for wide range of molecular systems, in IPSC data

## **Preliminary IPSC Results**



**Conclusion:** Overall similarity in the disease associations for wide range of molecular systems, in IPSC data

**Conclusion:** Regulatory structure within many modules is similar in IPSC

# Summary of approach to "imaging-omics"



#### Input phenotypes: Cognitive phenotypes Disease phenotypes

Genetic variants

**Examples:** 

Loneliness **Micro Infarcts** Peripheral expression TREM2 levels

SLC6A4 variants

#### **Brain-phenotype comparison:**

Where in the brain do phenotypes and MRI covary?



#### **Results:**

**Regions associated** with given phenotype



i.e. voxels covarying with gene expression

# Summary of approach to "imaging-omics"



#### Brain-phenotype comparison:

Where in the brain do phenotypes and MRI covary?



Individual brain scans

#### **Results:**

Regions associated with given phenotype



i.e. voxels covarying with gene expression

# Summary of approach to "imaging-expression"

Using the ROSMAP cohort...

- 1. We summarize gene expression/methylation into molecular systems
- 2. Then we relate the activity of molecular systems to brain regions

Molecular system A

Molecular systems are measured in DLPFC, then we map them onto global brain structures



# Summary of approach to "imaging-expression"

Using the ROSMAP cohort...

- We summarize gene expression/methylation into molecular systems 1.
- Then we relate the activity of molecular systems to brain regions 2.
- Repeat for each molecular system 3.



Molecular systems are measured in DLPFC, then we map them onto global brain structures

## Mapping coexpressed communities to MRI voxels



myelination synaptic transmission nuclear processes transcriptional regulation



Expression of molecular systems (measured in DLPFC) are related to R2 imaging features across the brain

Regions mapping to each molecular system are spatially coherent

### Tracts associated with MRI correlates of coexpression



### Tracts associated with MRI correlates of coexpression



Region B RightRostralMiddleFrontal RightLateralOrbitoFrontal RightRostralMiddleFrontal RightSuperiorFrontal RightInsula RightLateralOrbitoFrontal RightMedialOrbitoFrontal RightRostralMiddleFrontal

### Trait associations of MRI-associated gene clusters





# Mapping anterior caudate modules

Yellow: ECM (weak) Blue: Microglia Red: Mitochondria Green: Synaptic fx





## Mapping posterior cingulate modules

Indigo: RNA / m109 Green - unknown Fusia" response to unfolder protein



Why are certain genes differentially expressed?

(<u>www.differentialexpression.org</u> - deep neural networks)

Why are certain genes differentially expressed?

(<u>www.differentialexpression.org</u> - deep neural networks)

What genes control pathology and cog decline?

(<u>www.molecular.network</u> - multi-omic networks)

Why are certain genes differentially expressed?

(www.differentialexpression.org - deep neural networks)

What genes control pathology and cog decline?

(<u>www.molecular.network</u> - multi-omic networks)

Who can test my predicted disease gene?

("Moleclue" – hybrid molecular and publication networks - in progress with Rensselaer Polytechnic)



Why are certain genes differentially expressed?

(www.differentialexpression.org - deep neural networks)

What genes control pathology and cog decline?

(<u>www.molecular.network</u> - multi-omic networks)

Who can test my predicted disease gene?

("Moleclue" – hybrid molecular and publication networks - in progress with Rensselaer Polytechnic)



Human Cell Modeling @ Rush Yanling Wang MD PhD

A different kind of Alzheimer's lab Testing 100% computational predictions

Yanling Wang, MD PhD

Shinya Tasaki, Ph<mark>D</mark>

2013