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Introduction

* It is known that linear regression assumes that the error
outcome variable follows a normal distribution.

* However, there are many cases where the d
particularly toward the lower values for a

* This is relevant to pre-clinical AD
scale or measurement are like



Right-Skewed Distributions
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Data Transformations and Dichotomization

»Log, natural log, and square root are the most common.

» Transformations do not necessarily yield normal distributio
still perform normality tests to see if transformation was

» Interpretation of transformed values can be difficult
to interpret values on their original scale.

» Loss of statistical power
» Clinical/scientific meaningfulness of

» Dichotomization of continuous v
clinically validated cutpoint is
1.18).



Poisson Regression

e Used to characterize count data where lower values of a
the highest frequency.

e Often used to describe the occurrence of even
arrests, number of goals scored in the Worl

* In Poisson regression models, one o
the mean and variance of the ou

* What happens if variance i



Negative Binomial Regression

* The negative binomial (NB) model is similar to the Poisson
incorporates an additional term to account for the exc

* Like the Poisson model, the NB model can be
count data (integers) where the majority of
toward lower values of a variable.

* However, the NB model can be
higher than the mean.



Background of Case Study #1

* In neuropsychology, the term dispersion refers to the degr
variation in performance between different cognitive d
individual.

* Previous studies have found that individuals
domain dispersion are more likely to dev
(AD)*.

* No studies linking cognitive di

*Kalin et al, Frontiers in Aging an
*Vaughan et al, Current Gero
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Case Study #1

* Rush Religious Order Study

e Data from 123 cognitively unimpaired (CU) older adults who
neuropathological data.

* Five cognitive domains: Episodic Memory, Semanti
Perceptual Speed, Visuospatial

* Three measures of AD pathology: neurofi
(DPs), and neuritic plagues (NPs). Eac
counts from 5 cortical regions.

* Research question: Is within-
AD pathology?



Methodology

e Used the Intraindividual Standard Deviation (ISD) as the
dispersion.

* ISD = standard deviation of cognitive domain

e Used Poisson and Negative Binomial
association between ISD and mea
while adjusting age at death, s
status.



Distribution of Neuropathology Measur
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Descriptive Statistics for Neuropatholo

Mean Variance
NFTs 26.36 724.69 26.92
NPs 21.93 480.92 27.98

DPs 2513.02



Results from Poisson and NB Models

Poisson Coefficient Std. Error Residual p-value
Deviance
ISD and NFTs -0.23 0.12 2374.3 0.04
ISD and NPs 1.10 0.12 3781.2 <0.001
ISD and DPs 0.34 0.10 6574.4

Negative Coefficient Std. Error Residual p-value
Binomial Deviance
ISD and NFTs -0.23 0.53 135.83 0.66
ISD and NPs 1.06 1.08 130.79 0.33

ISD and DPs 0.44

1.44 133.07

0.70

All models adju



Which Model is Correct?

* Model fit can be assessed using the residual devian
df in the Chi-square distribution.

* For all models, df = 116 with an expecte

 Residual deviance values lower
higher values indicate a lack



Results from Poisson and NB Models

Poisson NB
Residual Deviance Residual Deviance
ISD and NFTs 2374.3 135.83
ISD and NPs 3781.2 130.79

ISD and DPs

6574.4 133.07

Chi-square critical value (df 116) = 142.14.



Additional Model Fit Methods

* In R, residual deviance value can be treated as a chi-squar
value. Can obtain a p-value, given the degrees of freed

1 - pchisq (residual deviance, df)

»1-pchisq(135.83, 116)
>[1] 0.1007073

* Additional method of Poisson
proposes that when the rati
the df for a model is equ
then the model fit is a

*Allison PD, Waterman RP (2002) Fixed ef



The Gamma Distribution

 What if the outcome variable is not an integer?

e Under the generalized linear model (GLM) fa
distribution can be specified.

* However, the dependent variable
numbers.
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Case Study #2 - Gamma GLM Example - A

* White matter hyperintensity volume (WMHYV) - FLAIR

e 297 CU ADNI Cases

* Research question — Is AV-45 SUVR as
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Case Study #2 - Gamma GLM Example - AD

* WMHV was the dependent variable with AV-45 as the in
variable.

e Covariates included age, sex, education, Hachi
(vascular risk), and APOE e4 carrier status.

* model<-glm(wmhv~age+sex+edu
family=Gamma(link = "log"), d



Gamma GLM Example - ADNI

Coefficients:

Estimate Std.

(Intercept) -5.39831
age 0.06416
gender 0.02873
educ 0.02692
apoe_carrierNon-Carrier 0.04765
hachinski 0.21840
SUVr 1.36929
Signif. codes: 0 “===7 (0,001 ==’

(Dispersion parameter for Gamma family taken to be 2.

Null deviance: 406.28 on 296 degrees of freedom
Residual deviance: 328.41 on 290 degrees of freedom

AIC: 1481

> 1-pchisq(328.41, 290)
[1] 0.05975271
}
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Discussion

* When data are right-skewed, Poisson, NB, and Gamma re
models can be used.

* No need to utilize transformations which can
problematic. In addition, data may still no
after a transformation is applied.

* These regression methods ma
studies where the distributi
likely to be right-skewed



Questio



