

SCAN provides service to NIA/ADCs
 Outline:

 Illustrate ADNI/clinical trial approach to MR
 similarities and differences proposed for SCAN

MR in clinical trials or ADNI environment Site survey and protocol development – propose same for SCAN technical survey of scanners at each site – pick best Create generic non-platform-specific protocol Select sequence types, order, some sequence-specific parameters Create a vendor and operating system-specific protocol for each scanner in the study pilot the protocol on every platform prior to site distribution ADNI: 60 scanners, 17 different vendor/OS platforms

ADNI 3 generic protocol

- **3D** T1 volume
- **3D** FLAIR
- T2* GRE (3 echoes for Siemens QSM)
 ASL
- TF-fMRI –advanced (SMS) or basic versions
 <u>dMRI advanced (SMS) or basic versions</u>
- Coronal high resolution T2 for hippocampal subfields

Sagittal 3D MPRAGE

TA: 5:12 PM: ISO Voxel size: 1.0x1.0x1.0mmPAT:2 Rel. SNR: 1.00 : tfl

Properties

Prio recon	Off
Load images to view	On
Inline movie	Off
Auto store images	On
Load images to stamp segments	On
Load images to graphic segments	Off
Auto open inline display	Off
Auto close inline display	Off
Start measurement without further	Off
Preparation	
Wait for user to start	Off
Start measurements	Single
measurement	

Routine

Slab group		1
Slabs		1
Dist. Factor		50 %
Position		L0.0 P5.4 H26.4
mm		
Orientation		Sagittal
Phase enc. Dir	A > > P	
Auto Align		- //
Phase oversampling		0 %
Slice oversampling		0.0 %
Slices per slab	208	
FOV read		256
FOV phase		93.8 %
Slice thickness		1.00 mm
TR		2300.0 ms
TE		2.98 ms
Averages		1
Concatenations		1
Filter		Distortion Corr.
(3D),		
		Prescan Normalize

Coil Elements

HC1-7; NC 1, 2

Contrast- Common

TR		2300.0 ms
TE		2.98 ms
Magn. Preparation		Non-sel. IR
TI		900 ms
Flip angle		9 deg
Fat suppr.		None
Water suppr.	None	
<u> Contrast- Dynamic</u>		
Averages		1
Averaging mode		Long term

Reconstruction	Magnitude
Measurements	1
Multiple series	Each measurement

Resolution – Common

FoV read		2 56 mm
FoV phase		93.8 %
Slice thickness		1.00 mm
Base resolution		256
Phase resolution		100 %
Slice resolution		100 %
Phase partial Fourier		Off
Slice partial Fourier		Off
Interpolation	Off	

Resolution - iPAT

PAT mode		GRAPPA
Accel. Factor PE		2
Ref. lines PE	32	
Accel. Factor 3D		1
Reference scan mode		Integrate

Resolution – Filter Image

Image Filter	Off
Distortion Corr.	On
Mode	3D
Unfiltered images	Off
Prescan Normalize	On
Unfiltered images	Off
Normalize	Off
B1 filter	Off

Resolution – Rawdata

Raw filter		Off
Elliptical filter	Off	

Geometry - Common

Slab group		1
Slabs		1
Dist. Factor		50 %
Position		L0.0
mm		
Orientation		Sagit
Phase enc. Dir	A >> P	
Slice oversampling		0.0 %
Slices per slab		208
FoV read		256
FoV phase		93.8
Slice thickness		1.00
TR		2300
Multi-slice mode		Sing
Series		Asce
Concatenations		1
<u>Geometry – Navig</u>	ator	

1
1
50 %
L0.0 P5.4 H26.4
Sagittal
0.0 %
208
256 mm
93.8 %
1.00 mm
2300.0 ms
Single shot
Ascending
1

<u>Geometry – AutoAlign</u>

Slab group		1
Position		L0.0 P5.4 H26.4
mm		
Orientation		Sagittal
Phase enc. Dir	A >> P	
AutoAlign		
Initial Position	L0.0 P5.4 H	26.4 mm
L		0.0 mm
P		5.4 mm
Н		26.4 mm
Initial Rotation	0.00 deg	
Initial Orientation		Sagittal
<u> System – Miscella</u>	neous	
Positioning mode		ISO
Table position	Н	
Table position	26 mm	
MSMA		S-C-T

<u>System – Miscellaneous</u>

Sagittal	L >> R
Coronal	A >> P
Transversal	F >> H
Coil Combine Mode	Adaptive Combine
Save uncombined	Off
Matrix Optimization	Off
AutoAlign	
Coil Select Mode	On - AutoCoilSelect

<u>System – Adjustments</u>

B0 Shim mode Standard	
B1 shim mode TrueForm	
Adjust with body coil	Off
Confirm freq. adjustment	Off
Assume Dominant Fat	Off
Assume Silicone	Off
Adjustment Tolerance	Auto

<u>System – Adjust Volume</u>

Position	L0.0 P5.4 H26.4 mm
Orientation	Sagittal
Rotation	0.0 deg
A >> P	240 mm
F >> H	256 mm
R >> L	208 mm
Reset	Off

<u>System – pTx Volumes</u> **B1** Shim mode TrueForm Excitation Non-sel. System – Tx/Rx Frequency 1H 123.251925 MHz Img. Scale Cor. 1.000 Reset Off ? Ref. amplitude 1H 0.000 V Physio – Signal1 1st Signal/ModeNone 2300.0 ms TR **Concatenations 1** Physio – Cardiac Magn. Preparation Non-sel. IR TL 900 ms Fat suppr. None Dark blood Off FoV read 256 mm FoV phase 93.8 % Phase resolution **100** % **Correction factor** 1 Gain Low

Physio – PACE		<u>Sequence – Part 1</u>		
Resp. control Off		Introduction	On	
Consistenctions	1	Dimension	3D	
	-	Elliptical scanning	Off	
<u>Inline - Common</u>		Reordering	Linear	
Subtract	Off	Asymmetric echo	Off	
Measurements1		Flow comp.	No	
StdDev	Off	Multi-slice mode	Single shot	
Save original images	On	Echo spacing 7.1 ms		
<u>Inline – MIP</u>		Bandwidth	240 Hz/Px	
MIP-Sag	Off	<u>Sequence – Part 2</u>		
MIP-Cor	Off	RF pulse type Fast		
MIP-Tra	Off	Gradient mode Normal		
MIP-Time	Off	Excitation	Non-sel.	
Save original images	On	RF spoiling	On	
Inline - Composing Incr. Gra		Incr. Gradient spoiling	Off	
Distortion Corr.	On	Turbo factor	208	
Mode	3D	<u>Sequence – Assistant</u>		
Unfiltered images	Off	Mode	Off	

parameters/sequence x 7 sequences/exam = **1050** parameters/exam

MR in clinical trials/ADNI environment

site certification- propose same for SCAN

Send and load protocol by efile
Scan on phantom/human volunteer
QC – did site execute protocol correctly
Certify site – one scanner per site

MR in clinical trials/ADNI environment

participant exam - propose same for SCAN

Scan participant, send to central repository, pull by Mayo
Automated QC

- Correct (certified) scanner
- Correct patient (serial)
- protocol correctly executed DICOM check parameters
 - $\blacksquare \sim 1000$ parameters to check per exam

Manual review of images in each exam - propose same for SCAN

Medical findings – safety – notify site/study if needed
 Local MR interpretation still needed
 Visual QC
 Scanner problem – eg. SNR, coil drop out

Tech errors – eg. copy FOV prescription error, intensity normalize off

Quality – e.g. motion

Coil Drop Out

inhomogeneity due to bad element in multi-channel head coil

Wrong acquisition plane

Copy FOV Prescription Error

Intensity Normalization - Off

Plan for SCAN

Front end (up to image analysis) - Mayo
Image analysis - DeCarli and Mayo
Image analysis - create numeric information, send to NACC
WMH volume calculation (FLAIR)
ROI-wise cortical volume thickness

How to operationalize MR for SCAN

Some aspects of clinical trial/ADNI operationalization may be problematic for SCAN

One certified scanner per site

■ Scans done on non certified scanners do not "count" in ADC tally

Pick best scanner at site for SCAN

• OK for new imaging cohorts

Continue on current for established longitudinal imaging cohorts

protocol

ADNI 3 protocol ~ 1 hr (45 min gradient time)

- 3D T1 volume
- **3D** FLAIR
- T2* GRE (3 echoes for Siemens QSM)
 ASL
- TF-fMRI –advanced (SMS) or basic versions
- dMRI advanced (SMS) or basic versions
- Coronal high resolution T2 for hippocampal subfields

Inherent conflict

require everyone to do exactly the same protocol
study-wide harmonization
Free form
innovation, flexibility and consistency at site level

SCAN protocol options

No harmonization

Accept all data generated at sites using their existing protocols

Rigid harmonization Require all 7 exact ADNI sequences

Compromise

Proposed compromise – site can choose

■ #1) Site only required to do 2 ADNI sequences: T1 & FLAIR First 10 minutes of exam belongs to NIA Remainder of exam belongs to site ■ SCAN would <u>only</u> collect and analyze T1 (enables ATN) and FLAIR #2) OR site may do T1, FLAIR & add'1 ADNI sequences • esp. sites that have do not now have a formal ADC imaging program SCAN would collect and analyze <u>all</u> sequences

Option 1: SCAN protocol

3D T1 volume 3D FLAIR

Site specific sequences

Option 2: SCAN protocol 3D T1 volume 3D FLAIR

Options for SCAN standards

■ T2* GRE

- 2D GRE vs SWI/SWAN vs multi echo P/F QSM, SWI (Siemens and Philips >5X) ?
- dMRI advanced (SMS) or basic versions **?**
- \blacksquare ASL 3D only
- TF-fMRI advanced (SMS) or basic versions ?
- Coronal high resolution T2 for hippocampal subfields ?

Limitations to harmonization

Siemens Prisma – 32 Channel

Siemens Biograph – HeadNeck_MRPET

Limitations to harmonization: FLAIR

Same volunteer: effect of manufacturer/ parameters on cortical segmentation – Gunter

GE

Siemens

Siemens

Yellow = cortical ribbon segmentation

Yellow = cortical ribbon segmentation

Solutions to data heterogeneity Paul Thompson

- 1. Meta-analysis of effects from each site (early ENIGMA)
- 2.¹ Fit the site/scanner effect using random effects regression (needs centralized data)
- 3. Use ComBat to adjust data histograms before pooling across sites/scanners
- 4. Use Variational Autoencoder (site free data+site code) with Generative Adversarial Networks that make it hard to tell which site the data came from (Moyer et al., Magn Res Med 2020)

https://www.youtube.com/watch?v=Kl3nRPFLqps&feature=youtu.be&t=898

Site may want to optimize sequence for their scanner: e.g. SNR resolution trade off

Better SNR

Worse SNR

2D FLAIR

3D FLAIR

2D FLAIR Compared to 3D FLAIR Infarction Detection

Same person for All Images

Site may want to keep protocol constant over time

Possible evolution of SCAN/ADC protocol

Multi shell DTI

- high resolution 3D T2 -perivascular spaces
- circle of Willis MR angiogram
- Multi echo read out GRE SWI/QSM

