

Developing Digital Assessments for Down-Syndrome Associated AD

Jason Hassenstab, PhD

Associate Professor Neurology and Psychological & Brain Sciences Cognitive Technology Research Laboratory (CTRLab) Knight Alzheimer's Disease Research Center Washington University in St. Louis

Disclosures: Jason Hassenstab, PhD

Research Support

- NIH U19AG032438
- NIH U01AG042791
- NIH P01AG026276
- NIH P50AG005681
- NIH P01AG003991
- NIH R01AG046179
- NIH R01AG053267
- NIH R01AG057840
- BrightFocus Foundation
- Shepard Family Foundation

Consultant/Advisory Boards

- Roche
- Prothena
- AlzPath
- Parabon Labs

Clinical Trials

- Cognition Core Leader: DIAN-TU
- DSMB Member: Mission AD (Eisai)
- DSMB Chair: Caring Bridge (NIA: Rogalski, PI)
- DSMB Chair: Wall-E (NIA: Jacobs, PI)

Overview

•Measurement burst designs for mobile monitoring of cognition.

• Developing a smartphone application for a global Phase 2/3 prevention trial for Down syndrome-associated Alzheimer's disease.

•Adapting existing tasks from the Ambulatory Research in Cognition (ARC) smartphone app

 Accessibility and User Experience: Design Considerations for Down syndrome participants

●If time: Advantages and perils of bring your own device (BYOD) study designs

LIMITATIONS OF TRADITIONAL COGNITIVE ASSESSMENTS

- Assessments <u>very</u> removed from reality.
- Feeling of being "tested" by other person.
- "White-coat" testing effects.
- Effects of daily stressors (fatigue, mood, illness, traveling to sites).

"ONE-SHOT"

Testing typically completed in one extended session

High Variability = Drastic reductions in statistical power.

Ambulatory Research in Cognition (ARC)

Participants use their personal smartphone, industry term is BYOD (Bring Your Own Device).

The idea behind ARC is simple:

- **1.** Test often and everywhere.
- 2. Keep it short.
- 3. Combine the results.

With this simple formula we hope to significantly improve the precision of cognitive testing.

7-day "Burst" Design

ARC Publications

• ARC sensitive to Dominantly Inherited Alzheimer Disease (DIAD). Good correlations between inclinic cognitive assessments, AD biomarkers, and predicts disease onset. Hassenstab et al., 2020 *Alzheimer's & Dementia*.

 Bring your own device (BYOD): Device-specific response latencies (both tapping and display latencies) vary considerably depending upon programming and quality of devices. Nicosia et al., 2022 Behavior Research Methods.

• Smartphone-naïve older adults <u>can</u> enroll and successfully use smartphones, with very good adherence. Nicosia et al., 2022 *Frontiers in Digital Health.*

● In a sporadic AD population, good correlations with in-clinic tests, AD biomarkers, and excellent retest reliability at 6mos and 1-year (0.90 & 0.97). Nicosia et al., 2022 *Journal of the International Neuropsychological Society*.

● Also in sporadic AD, ARC was sensitive to time of day. Worse evening performance, and those with elevated AD biomarkers showed more decline in evening. Wilks et al., 2021 *Journal of Clinical and Experimental Neuropsychology.*

Can we adapt our tool for global Down syndrome studies?

Considerations

 Intellectual disability (ID): Extremely wide range of intellectual abilities in DS Fortea et al, 2021 Lancet Neurol

• Many individuals with DS struggle with literacy.

- Physical considerations: Speech difficulties, low vision are common. Edgin et al., 2010 *Neurodev Disord*
- Do older adults with DS actually use smartphones?
- What role will study partners have?

Original Symbols Test (20-40 seconds) Processing Speed

Test 3 of 3 Symbols

You will see three pairs of symbols at the top of the screen and two pairs at the bottom.

As quickly as you can, tap the pair at the bottom of the screen that matches one of the pairs at the top. **SYMBOLS** Test Participants complete 12 trials as quickly as possible. Primary outcome: Number correct and response time.

SYMBOLS Test

Participants are asked Which pair below matches one of the pairs on top?

DS-ARC Shapes Test (60 seconds) Processing Speed

ARC SYMBOLS Test

- 12 trials
- Matching two abstract shapes
- Written instructions & tutorial

Which pair below matches one of the pairs on the top?

DS-ARC SHAPES Test

- 10 trials
- Matching one abstract shape
- Instructions & tutorial via audio

Original ARC Prices Test (60 seconds)

- 10 Price-item pairs per session
- At least \$1.50 between item pairs
- 3s presentation
- Primary Outcome:
 Percent Errors

Ctr

Study Phase

Recall Phase

DS-ARC Prices Test (90 seconds)

- 6 Price-item pairs per session
- 2-digit prices
- At least \$3 between item pairs
- 6s presentation
- Uses pictures of food items

Ctr

Original ARC GRIDS Test (30-40 seconds) Spatial Working Memory

Ctrl

DS-ARC PETS Test (60 seconds) Spatial Working Memory

Ctrl

Accessibility Resources for Tech Development

Web Content Accessibility Guidelines (WCAG; w3.org/WAI)

• Applies to any digital content, including smartphone apps, websites, gaming, productivity software, etc.

Web Accessibility Checklist

A checklist for creating accessible websites and web applications.

Share: ℃fin

Images should have meaningful alternative text	+
Links should be visually identifiable	+
□ Use descriptive section headings	+
□ Use correct semantic HTML element structure for your content	+
☐ Forms have descriptive labels	+
Information should not depend on color sound shape size or visual location	+

webaccessibilitychecklist.com

If BYOD, What about device latencies?

WALT Latency Timing Device

Developed by Google/Android engineers to assess smartphone and tablet performance.

"Suggested" Tap Latency Protocol

Enter the TapBOT, AKA Tappy

First Prototype

TAPBOT 2.0

TAPBOT 3.0 "Tappy"

Tappy iOS Tap Latency Results: CPU Load by Power Modes

Latency and Timing Assessment Robot (LaTAR Bot)

- LaTAR Bot Outcomes:
- Tapping Latency
- Display Latency
- Physical Tapping Latency

LaTAR Bot Data Co

LaTAR Bot Configuration

LaTAR Bot Apparatus

Display Latencies for 26 Popular Smartphones

Nicosia et al, 2022 Beh Res Meth

Tap Latencies for 26 Popular Smartphones

How is this useful for clinical research?

Optimal Response Times (in Theory)

Guidelines for BYOD Studies

(A) BYOD Study [Design Choice	Potential Effect on Response Times
Within-Person	Mid-Study Change to Same Device	mild
	Mid-Study Change to Same Manufacturer	moderate
	Mid-Study Change to Different Manufacturer	severe
	Mid-Study OS Software Update	moderate
Between-Person	Same Device, Same OS	mild
	Different OS Versions (Same Device)	moderate
	Different Devices (Same Manufacturer)	moderate
	Different Devices (Different OS and/or Manufacturers)	severe

(B) BYOD Study Design Tradeoffs					
Response Time Precision	Participant Sampling Pool	Cost	BYOD Design		
~105 ms total device variability	Large	2	Full BYOD		
max - min for all devices in the study	Large	Ψ	I di DI OD		
~70 ms total device variability	Moderate	\$\$	Selective BYOD		
max - min for iOS only devices in the study	Moderate	ΨΨ	Selective DI OD		
~17 ms total device variability					
theoretical total latency variability of	Small	\$\$\$	Device Provided		
device with 120 Hz refresh & sampling rate					

Acknowledgments

Collaborators: Andrew Aschenbrenner, PhD Jessica Nicosia, PhD Marisol Tahan, BA David Balota, PhD Joy Balls-Berry, PhD John C. Morris, MD Eric McDade, DO Randall Bateman, MD Hannah Wilks, BA Sarah Stout, MA

Funding Sources: NIH P01AG00373991 NIH R01AG057840 BrightFocus Foundation Shepard Family Foundation

Tech:

happyMedium, LLC Sage Bionetworks

Participants and Families

Questions?

hassenstabj@wustl.e