Developing Digital Assessments for Down-Syndrome Associated AD

Jason Hassenstab, PhD
Associate Professor
Neurology and Psychological & Brain Sciences
Cognitive Technology Research Laboratory (CTRLab)
Knight Alzheimer’s Disease Research Center
Washington University in St. Louis
Disclosures: Jason Hassenstab, PhD

Research Support
- NIH U19AG032438
- NIH U01AG042791
- NIH P01AG026276
- NIH P50AG005681
- NIH P01AG003991
- NIH R01AG046179
- NIH R01AG053267
- NIH R01AG057840
- BrightFocus Foundation
- Shepard Family Foundation

Consultant/Advisory Boards
- Roche
- Prothena
- AlzPath
- Parabon Labs

Clinical Trials
- Cognition Core Leader: DIAN-TU
- DSMB Member: Mission AD (Eisai)
- DSMB Chair: Caring Bridge (NIA: Rogalski, PI)
- DSMB Chair: Wall-E (NIA: Jacobs, PI)
Overview

- Measurement burst designs for mobile monitoring of cognition.
- Developing a smartphone application for a global Phase 2/3 prevention trial for Down syndrome-associated Alzheimer’s disease.
- Adapting existing tasks from the Ambulatory Research in Cognition (ARC) smartphone app
- Accessibility and User Experience: Design Considerations for Down syndrome participants
- If time: Advantages and perils of bring your own device (BYOD) study designs
LIMITATIONS OF TRADITIONAL COGNITIVE ASSESSMENTS

ARTIFICIAL
- Assessments very removed from reality.
- Feeling of being “tested” by other person.
- “White-coat” testing effects.
- Effects of daily stressors (fatigue, mood, illness, traveling to sites).

“ONE-SHOT”
- Testing typically completed in one extended session

High Variability = Drastic reductions in statistical power.

Figure credit to M. Sliwinski
Ambulatory Research in Cognition (ARC)

The ARC app administers very brief cognitive tests four times per day for one week. Each test session takes less than 3 minutes.

Participants use their personal smartphone, industry term is BYOD (Bring Your Own Device).

The idea behind ARC is simple:

1. Test often and everywhere.
2. Keep it short.
3. Combine the results.

With this simple formula we hope to significantly improve the precision of cognitive testing.
7-day “Burst” Design

Mon
- 7 A
- 8 A
- 9 A
- 10 A
- 12 P
- 1 P
- 2 P
- 3 P
- 4 P
- 5 P
- 6 P
- 7 P
- 8 P
- 9 P
- 10 P

Tues
- 7
- 8
- 9
- 10
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

Wed
- 7
- 8
- 9
- 10
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

Thu
- 7
- 8
- 9
- 10
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

Fri
- 7
- 8
- 9
- 10
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

Sat
- 7
- 8
- 9
- 10
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

Sun
- 7
- 8
- 9
- 10
- 12
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

KEY:
- 🟢 = Grids task
- $ = Prices task
- 🌟 = Symbols task
ARC sensitive to Dominantly Inherited Alzheimer Disease (DIAD). Good correlations between in-clinic cognitive assessments, AD biomarkers, and predicts disease onset. Hassenstab et al., 2020 *Alzheimer’s & Dementia*.

Bring your own device (BYOD): Device-specific response latencies (both tapping and display latencies) vary considerably depending upon programming and quality of devices. Nicosia et al., 2022 *Behavior Research Methods*.

Smartphone-naïve older adults can enroll and successfully use smartphones, with very good adherence. Nicosia et al., 2022 *Frontiers in Digital Health*.

In a sporadic AD population, good correlations with in-clinic tests, AD biomarkers, and excellent retest reliability at 6mos and 1-year (0.90 & 0.97). Nicosia et al., 2022 *Journal of the International Neuropsychological Society*.

Also in sporadic AD, ARC was sensitive to time of day. Worse evening performance, and those with elevated AD biomarkers showed more decline in evening. Wilks et al., 2021 *Journal of Clinical and Experimental Neuropsychology*.
Can we adapt our tool for global Down syndrome studies?
Considerations

◉ Intellectual disability (ID): Extremely wide range of intellectual abilities in DS Fortea et al, 2021 *Lancet Neurol*

◉ Many individuals with DS struggle with literacy.

◉ Physical considerations: Speech difficulties, low vision are common. Edgin et al., 2010 *Neurodev Disord*

◉ Do older adults with DS actually use smartphones?

◉ What role will study partners have?
Original Symbols Test (20-40 seconds) Processing Speed

SYMBOLS Test

Participants are asked Which pair below matches one of the pairs on top?

SYMBOLS Test

Participants complete 12 trials as quickly as possible. Primary outcome: Number correct and response time.

Nicosia et al. 2022 *JINS*
DS-ARC Shapes Test (60 seconds)
Processing Speed

ARC SYMBOLS Test
• 12 trials
• Matching two abstract shapes
• Written instructions & tutorial

DS-ARC SHAPES Test
• 10 trials
• Matching one abstract shape
• Instructions & tutorial via audio

Nicosia et al. 2022 JINS
ARC Prices Test
• 10 Price-item pairs per session
• At least $1.50 between item pairs
• 3s presentation
• Primary Outcome: Percent Errors
DS-ARC Prices Test (90 seconds)

DS-ARC Prices Test
- 6 Price-item pairs per session
- 2-digit prices
- At least $3 between item pairs
- 6s presentation
- Uses pictures of food items
Original ARC GRIDS Test (30-40 seconds)
Spatial Working Memory

Wilks et al, 2021 JCEN; Nicosia et. 2022 JINS
DS-ARC PETS Test (60 seconds)
Spatial Working Memory
Accessibility Resources for Tech Development

Web Content Accessibility Guidelines (WCAG; w3.org/WAI)

• Applies to any digital content, including smartphone apps, websites, gaming, productivity software, etc.
Web Accessibility Checklist

A checklist for creating accessible websites and web applications.

Share:

- [x] Images should have meaningful alternative text
- [x] Links should be visually identifiable
- [x] Use descriptive section headings
- [x] Use correct semantic HTML element structure for your content
- [x] Forms have descriptive labels
- [x] Information should not depend on color, sound, shape, size, or visual location

webaccessibilitychecklist.com
If BYOD, What about device latencies?
WALT Latency Timing Device

Developed by Google/Android engineers to assess smartphone and tablet performance.

“Suggested” Tap Latency Protocol
Enter the TapBOT, AKA Tappy

First Prototype
TAPBOT 2.0
TAPBOT 3.0 “Tappy”
Tappy iOS Tap Latency Results: CPU Load by Power Modes

- Normal Power Mode
- Power Saver Mode

Phone Model:
- iPhone 5s
- iPhone 6
- iPhone 7
- iPhone SE

Tap Delay (seconds)

CPU Load (%)
Latency and Timing Assessment Robot (LaTAR Bot)

- LaTAR Bot Outcomes:
 - Tapping Latency
 - Display Latency
 - Physical Tapping Latency

Optical Sensor (Display Latency)
Solenoid w/Probe (Tap Latency)
Sensor (Variable Capacitance)

Nicosia et al, 2022 Beh Res Meth
LaTAR Bot Configuration

- **Laptop**
 - GUI
 - Server Process

- **Phone**
 - LaTAR mobile application

- **LaTARbot**
 - LaTAR embedded application

Connections:
- Screen brightness commands & capacitive touch timestamps from Laptop to Phone
- Capacitive touch commands & screen brightness timestamps from Laptop to LaTARbot
- Capacitive touch actuator between Phone and LaTARbot
- Screen brightness sensor between Phone and LaTARbot
Display Latencies for 26 Popular Smartphones

(A) Mean Device Display Latencies

Phone Model

Nicosia et al, 2022 Beh Res Meth
Tap Latencies for 26 Popular Smartphones

(B) Mean Device Tap Latencies
How is this useful for clinical research?
Optimal Response Times (in Theory)

- t0: Application calls draw function (display "callback time")
- t1: App draw function returns (display "action time")
- t2: OS renders the frame (drawing complete)
- t3: Screen begins refresh, photons leaving parts of screen
- t4: Screen completes refresh, photons leaving screen
- t5: Photons reach human eye or LaTAR photodiode
- t6: Visual input received by human brain / LaTAR CPU

- LaTAR display callback latency
 - ~0-1 ms
 - 10s of ms
 - 10s-100s of ms

- LaTAR display action latency
 - <17 ms @ 60 Hz Refresh Rate
 - <1 ms
 - <4 +/- 2 ms

- LaTAR touch callback latency
 - ~17 ms @ 60 Hz Sample Rate

- LaTAR touch action latency
 - ~2-3 ms

Nicosia et al, 2022 Beh Res Meth
Guidelines for BYOD Studies

(A) BYOD Study Design Choice

<table>
<thead>
<tr>
<th>Within-Person</th>
<th>Potential Effect on Response Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Study Change to Same Device</td>
<td>mild</td>
</tr>
<tr>
<td>Mid-Study Change to Same Manufacturer</td>
<td>moderate</td>
</tr>
<tr>
<td>Mid-Study Change to Different Manufacturer</td>
<td>severe</td>
</tr>
<tr>
<td>Mid-Study OS Software Update</td>
<td>moderate</td>
</tr>
<tr>
<td>Same Device, Same OS</td>
<td>mild</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Between-Person</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Different OS Versions (Same Device)</td>
<td>moderate</td>
</tr>
<tr>
<td>Different Devices (Same Manufacturer)</td>
<td>moderate</td>
</tr>
<tr>
<td>Different Devices (Different OS and/or Manufacturers)</td>
<td>severe</td>
</tr>
</tbody>
</table>

(B) BYOD Study Design Tradeoffs

<table>
<thead>
<tr>
<th>Response Time Precision</th>
<th>Participant Sampling Pool</th>
<th>Cost</th>
<th>BYOD Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>~105 ms total device variability</td>
<td>Large</td>
<td>$</td>
<td>Full BYOD</td>
</tr>
<tr>
<td>max - min for all devices in the study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~70 ms total device variability</td>
<td>Moderate</td>
<td>$$</td>
<td>Selective BYOD</td>
</tr>
<tr>
<td>max - min for iOS only devices in the study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~17 ms total device variability</td>
<td>Small</td>
<td>$$$</td>
<td>Device Provided</td>
</tr>
<tr>
<td>theoretical total latency variability of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>device with 120 Hz refresh & sampling rate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nicosia et al, 2022 *Beh Res Meth*
Acknowledgments

Collaborators:
Andrew Aschenbrenner, PhD
Jessica Nicosia, PhD
Marisol Tahan, BA
David Balota, PhD
Joy Balls-Berry, PhD
John C. Morris, MD
Eric McDade, DO
Randall Bateman, MD
Hannah Wilks, BA
Sarah Stout, MA

Funding Sources:
NIH P01AG00373991
NIH R01AG057840
BrightFocus Foundation
Shepard Family Foundation

Tech:
happyMedium, LLC
Sage Bionetworks

Participants and Families
Thanks

Questions?

hassenstabj@wustl.edu
@neuroplebeian