Estimate the time-to-conversion for Alzheimer's Disease using neuroimaging-genomics multi-modal deep survival analysis

Da Ma
Assistant Professor
Gerontology and Geriatric Medicine
Alzheimer’s Disease Research Center
Center for Biomedical Informatics
Wake Forest University School of Medicine
Outlines

• Background / Aims
 • Predict time-to-conversion for dementia
 • Study the influence of different data modality on dementia conversion

• Study Design
 • Outcome measurement
 • Cohort Stratification
 • Independent variables

• Data processing / Feature extraction
 • Multi-type feature selection
 • Feature importance analysis – Permutation test

• Experimental setup
 • Deep Survival Model design
 • Evaluation

• Results
• Conclusion
Study Aims

• Predict time-to-conversion for Dementia of Alzheimer’s Type (DAT)
 • Using multi-modal predictor, including: MRI, Genetics, Cerebrospinal Fluid (CSF) biomarker, Cognitive tests

• Study the influence of each data modality on disease prediction
Predicting time-to-conversion - Survival analysis

- **Probability of dementia risk**
 - as a function of time

- Example:
 - APOE allele dementia risk

![The survival curve for APOE](image-url)

Reiman et al. 2020 Nature Communication
Survival analysis - Sensoring

Survival Analysis:
- Analysis of the time an individual will experience an event of interest

Event of Interest
- Dementia onset (DAT diagnosis confirmation)

Left sensor
- Event happens before the first clinical visit (baseline)

Right Sensor
- Event happens after last clinical visit (final timepoint)
Predicting time-to-conversion - Survival analysis

Ground truth labels

1. **Event indicator:**
 - 0 = Non-progressive (right censored)
 - 1 = Progressive

2. **Duration:**
 - **Non-progressive:** Duration between the first and last visit
 - **Progressive:** Duration between first visit and DAT diagnosis confirmation

![Diagram showing study start and end with different censoring and event types](image)
Training/evaluation cohort: ADNI-1

Subject grouping

<table>
<thead>
<tr>
<th>Group name</th>
<th>Clinical progression</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-progressive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sNC: stable NC</td>
<td>NC → NC</td>
<td>109</td>
</tr>
<tr>
<td>uNC: unstable NC</td>
<td>NC → MCI</td>
<td>22</td>
</tr>
<tr>
<td>sMCI: stable MCI</td>
<td>MCI → MCI</td>
<td>101</td>
</tr>
<tr>
<td>Progressive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pNC: progressive NC</td>
<td>NC → MCI → DAT</td>
<td>14</td>
</tr>
<tr>
<td>pMCI: progressive MCI</td>
<td>MCI → DAT</td>
<td>155</td>
</tr>
</tbody>
</table>

Stratified Train/Valid/Test split

<table>
<thead>
<tr>
<th>Groups</th>
<th>Training set</th>
<th>Validation set</th>
<th>Testing set</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sNC</td>
<td>70</td>
<td>17</td>
<td>22</td>
<td>109</td>
</tr>
<tr>
<td>uNC</td>
<td>14</td>
<td>4</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>pNC</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>sMCI</td>
<td>65</td>
<td>16</td>
<td>20</td>
<td>101</td>
</tr>
<tr>
<td>pMCI</td>
<td>99</td>
<td>25</td>
<td>31</td>
<td>155</td>
</tr>
<tr>
<td>Total</td>
<td>257</td>
<td>64</td>
<td>80</td>
<td>401</td>
</tr>
</tbody>
</table>

Only baseline data were used for training
Data – Input Features

Neuroimage & Genomic Feature Selection (Within Training Data)

MRI data
(91 FreeSurfer parcellated ROI volumes)

Genetic data
(521,014 “plink” quality-checked SNPs + APOE-ε2/3/4)

Welch’s t-test

Fisher’s exact test

Sub-bagging x 10

21 MRI features

21 genetic features

Feature ranking based on selection frequency

Final 21 MRI features

Final 21 genetic features
Data modalities

- **MRI**: 21 ROI volume (Z-standardized) (21 features)
- **Genetic**: 18 SNPs + 3 APOE alleles (21 features)
- **DTC**: 21 features
 - Demographic (4 features)
 - Cognitive Tests (11 features)
 - CSF (7 features)
- Only baseline data was used for training

<table>
<thead>
<tr>
<th>MRI features</th>
<th>Genetic features</th>
<th>DTC features / #missing data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amygdala - Left</td>
<td>APOE-ε2</td>
<td>AB40 (CSF) / 41</td>
</tr>
<tr>
<td>Amygdala - Right</td>
<td>APOE-ε3</td>
<td>AB42 (CSF) / 40</td>
</tr>
<tr>
<td>Entorhinal - Left</td>
<td>APOE-ε4</td>
<td>AB (CSF) / 176</td>
</tr>
<tr>
<td>Entorhinal - Right</td>
<td>rs524410</td>
<td>ptau (CSF) / 176</td>
</tr>
<tr>
<td>Fusiform - Left</td>
<td>rs746947</td>
<td>ptau/AB (CSF) / 176</td>
</tr>
<tr>
<td>Fusiform - Right</td>
<td>rs1010616</td>
<td>Tau (CSF) / 176</td>
</tr>
<tr>
<td>Hippocampus - Left</td>
<td>rs1864036</td>
<td>tau/AB (CSF) / 176</td>
</tr>
<tr>
<td>Hippocampus - Right</td>
<td>rs2085925</td>
<td>Age (DEM) / 0</td>
</tr>
<tr>
<td>Inferior-parietal - Left</td>
<td>rs2405940</td>
<td>Education (DEM) / 0</td>
</tr>
<tr>
<td>Inferior-parietal - Right</td>
<td>rs2883782</td>
<td>Marital status (DEM) / 0</td>
</tr>
<tr>
<td>Inferior-temporal - Left</td>
<td>rs4953672</td>
<td>ADAS11 (TST) / 0</td>
</tr>
<tr>
<td>Inferior-temporal - Right</td>
<td>rs5918417</td>
<td>ADAS13 (TST) / 0</td>
</tr>
<tr>
<td>Inferior-lateral-ventricle - Left</td>
<td>rs5918419</td>
<td>CDRSB (TST) / 0</td>
</tr>
<tr>
<td>Inferior-lateral-ventricle - Right</td>
<td>rs6116375</td>
<td>FAQ (TST) / 2</td>
</tr>
<tr>
<td>Middle-temporal - Left</td>
<td>rs6773506</td>
<td>LDELTOTAL (TST) / 0</td>
</tr>
<tr>
<td>Middle-temporal - Right</td>
<td>rs7627954</td>
<td>MMSE (TST) / 0</td>
</tr>
<tr>
<td>Parahippocampal - Left</td>
<td>rs10465385</td>
<td>RAVLT-forgetting (TST) / 1</td>
</tr>
<tr>
<td>Parahippocampal - Right</td>
<td>rs10510985</td>
<td>RAVLT-immediate (TST) / 1</td>
</tr>
<tr>
<td>Precuneus - Left</td>
<td>rs10924809</td>
<td>RAVLT-learning (TST) / 1</td>
</tr>
<tr>
<td>Precuneus - Right</td>
<td>rs12522102</td>
<td>RAVLT-%forgetting (TST) / 2</td>
</tr>
<tr>
<td>Supramarginal - Left</td>
<td>rs17197559</td>
<td></td>
</tr>
</tbody>
</table>
Cox regression model
• Hazard function: \(h(t|x) = h_0(t) \exp[g(x)] \)

Deep Survival Model
• a non-linear version of the Cox model where \(g(x) \) parametrized by a neural network (Multi-Layer-Perceptron)

Loss function
• \(\text{loss} = \sum_i D_i \log(\sum_{j \in R_i} \exp[g(x_j) - g(x_i)]) \)
 • \(D_i \): event indicator for subject \(i \) (1=progressive, 0=non-progressive)
 • \(R_i \): set of all individuals at risk

\(g(x) = \beta^T x \)
6 Feature sets combination

1. Genetic data (GEN; 21 features)
2. MRI data (MRI; 21 features)
3. Demographic + Cognitive Test + CSF (DTC; 21 features)
4. MRI and genetic data (GEN+MRI; 42 features)
5. Genetic and DTC data (GEN+DTC; 42 features)
6. MRI and DTC data (MRI+DTC; 42 features)
7. All features (GEN+MRI+ DTC; 63 features)
Integrated Brier Score (IBS)

• The average squared distances between the observed \(y_i\) and predicted survival probability \(\hat{p}_i\)

\[
BS = \frac{1}{N} \sum_i (y_i - \hat{p}_i)^2
\]

• \(0 < \text{IBS} < 1\) (the smaller the better)
Evaluation Metrics 1 Results

Same conclusion:

- Combining MRI and GEN (MRI+GEN) improves the performance
- DTC works best amongst single modalities
- MRI + GTC improved GTC (not statistically significant)
Time-dependent Concordance Index (C_{td}-index)

- Compares the order of predicted survival times with true survival times for a random pair of subjects

$$0 < C_{td}$-index < 1 \text{ (the bigger the better)}$$
Combining MRI and GEN (MRI+GEN) improves the performance.

DTC works best amongst single modalities.

MRI + GTC improved GTC (not statistically significant).
Predicted vs. true time-to-conversion difference

Results
Results

Predicted vs. true time-to-conversion difference

- **Predicted time**: the time a subject's survival probability reaches 50%
 - If this doesn’t happen: Predicted time = 20 years after initial visit

- More than half of the subjects (80/150 or 53.4%) had a time difference of less than 1.5 years

- The predicted event time was earlier than the actual event time for 37 subjects (24.7%)
Feature type comparison

- Dementia onset time prediction
- DTC
 - Demographic
 - Cognitive test
 - Cerebral Spinal Fluid Biomarker

Results
Feature Importance Analysis

• Explain and compare the contributions of each feature toward the time-to-conversion prediction

• Determine feature contributions through the permutation importance analysis

• Random shuffling of each feature
Feature importance: ALL

- **27/36 features** had a positive effect on performance
 - 6 GEN
 - 9 MRI
 - 12 DTC

- **8 of the top 10 features** were from **DTC** including **7 TST** features and **1 DEM**

- The most important feature was **CDRSB** (Clinical Dementia Rating Scale)
Feature importance: GEN

- 14/21 features had a positive effect on performance
- The most important feature was APOE-ε4
- Top 10 most important features were from chromosomes 2, 3, 19, and X
Results

Feature importance: MRI

- 15/21 features had a positive effect on performance
- The most important feature was L-Hippocampus
- Other important features include: L-Amygdala, R-Hippocampus, and R-inferiorparietal
Results

Feature importance: DTC

- 19/21 features had a positive effect on performance.
- 8 of the top 10 features were from cognitive tests (TST) and the other 2 were demographic (DEM) features.
- The most important feature was the Delayed recall variable from the Logical memory test (LDEL-Total).
• Modality comparison for Alzheimer’s disease time-to-conversion prediction estimation for subjects at different stages of the disease
 • Genomic factor is better at the prodromal stage (pNC)
 • Neuroimage + CSF is better at early disease stage (pMCI)

• Novel AD-related genomic factors are discovered Explainable AI to explore feature importance
Acknowledgement

Prof. Suzanne Craft
Prof. Metin Gurcan
Prof. Mirza Faisal Beg
Prof. Lei Wang
Prof. Jiguo Cao
Prof. James E. Galvin
Dr. Samuel Lockhart
Dr. Da Ma
Dr. Sieun Lee
Dr. Karteek Popuri
Ms. Ghazal Mirab
Dr. Cedric Beaulac
Dr. Hyunwoo Lee
Thank you!

Q&A