

"Genetics of Alzheimer's Disease in Minoritized Populations "

Margaret A. Pericak-Vance, Ph.D.

Director, John P. Hussman Institute for Human Genomics

Dr. John T Macdonald Foundation Professor of Human Genetics University of Miami Miller School of Medicine

10/17/2022

Human Genetics Disease Research Goals

- Study human disease mechanism directly in humans
- Prediction
- Mechanism
- Drug targets

Genetic Studies in Alzheimer Disease

Why study genes?

To identify new targets for drug discovery

Genetic targets are 2X as successful in drug trials versus non-genetic targets.

Why study Diverse Groups

More than 30 genetic risk factors for AD discoveredprimarily in individuals of European ancestral descent

Different ancestral groups have different genetic risk factors

So that treatments are universally translational

 Black Americans and Hispanic Americans are more likely to develop AD and dementia compared to non-Hispanic white (European) Americans

- Greater familial risk for AD
- Limited health care access
- AD patients identified at later stages
- Poorer treatment outcomes

http://www.poststat.net/pwp008/pub.49/issue.350/article.528/

Why Study Diverse Groups

- The underrepresentation of ancestrally diverse populations in genetic studies:
 - hinders our ability to fully understand the genetic architecture of disease, and
 - intensify health inequalities.
 - reduce the power of risk prediction
- The translation of genetic research into clinical practice may be dangerously incomplete or, worse, mistaken

Ancestry category distribution of individuals in study catalog

Sirugo, et al, 2019

Genetic Studies in Alzheimer Disease

AD GWAS studies

Europeans: N~**93,000** (Kunkle et al. 2019) African Americans: N~**8,000** (Kunkle et al. 2020) Hispanics: N~**4,500** (Tosto et al., 2015)

https://all-free-download.com/free-vector/europe-map-transparent-background_sort_by_unpopular.html

Alzheimer Disease

People living with dementia around the world

100M

US Populations Diversity and Growth*

*2020 US Census

Aging Population 65 yrs and older in the US

From Kawas CH et al JAMA 78(6): 650, 2021

Global Ancestry: Continental Populations

Global Ancestry and Admixture

Average Ancestral Proportions in Hispanic Populations and African Americans

Admixture and Local Ancestry

 Local ancestry estimates of a Black American individual

The US Black population is a two-way admixed population with genetic ancestry from African and European ancestors.

Local Ancestry in Puerto Ricans

Race versus Ancestry

- Ancestry is biological and is about the history of genetic variation and the origin of one's population
- Race, itself is not biological, but is often self-ascribed or sociallyascribed by others
- As I have shown populations used to live in isolation with each geographic region having its own genetic map (Continental Populations)
- Populations today particularly in the US are admixed (multiple ancestries) with individuals of European, African, Amerindian and Asian ancestry.

Ancestry versus Race

Admixture – Local Ancestry – APOE

12 11 10

Genetic Position (cM)

Conclusion: Factors contributing to the lower risk effect in the *APOE* are due to ancestry-specific genetic factors near *APOE* rather than non-genetic ethnic, cultural and environmental factors.

+++

++++

The Risk to Develop Alzheimer Disease (AD) *for ApoEe4/4* carriers (compared to *ApoEe3/3* carriers) is <u>different across</u> <u>ancestral groups</u>

UNIVERSITY OF MIAMI MILLER SCHOOL OF MEDICINE JOHN P. HUSSMAN INSTITUTE for HUMAN GENOMICS

FEATURED ARTICLE | 🔂 Full Access

Increased APOE ε4 expression is associated with the difference in Alzheimer's disease risk from diverse ancestral backgrounds

Anthony J. Griswold, Katrina Celis, Parker L. Bussies, Farid Rajabli, Patrice L. Whitehead, Kara L. Hamilton-Nelson, Gary W. Beecham, Derek M. Dykxhoorn, Karen Nuytemans, Liyong Wang, Olivia K. Gardner, Daniel A. Dorfsman, Eileen H. Bigio, Marek Marsel Mesulam, Sandra Weintraub, Changiz Geula, Marla Gearing, Elisa McGrath-Martinez, Clifton L. Dalgard, William K. Scott, Jonathan L. Haines, Margaret A. Pericak-Vance, Juan I. Young, Jeffery M. Vance 🖾 ... See fewer authors 🔨

First published: 01 February 2021 | https://doi.org/10.1002/alz.12287 |

Anthony J. Griswold, Katrina Celis, Juan I. Young, and Jeffery M. Vance contributed equally to this study.

The Caribbean-Hispanic Alzheimer's Brain Transcriptome Reveals Ancestry-Specific Disease Mechanisms – *in press*

ABCA7 first implicated in AD risk in Europeans

- ABCA7: ATP-binding cassette, subfamily A (ABC1), member 7
 - ABC transporters are a large gene superfamily involved in the movement of molecules across cellular membranes
- Two distinct studies identified single nucleotide polymorphisms (SNPs) in ABCA7 significantly associated with AD risk
- Both studies were performed with large cohorts of AD patients and controls with European ancestry (non-Hispanic white/NWH).

Hollingworth, et al, *Nat Genet.*, 2011 Naj, et al, *Nat Genet.*, 2011

Risk Prediction may not be accurate

Critical variants may be missed

- Low frequency variants/variants absent in European populations may be missed
- Rare variants are more likely to be population specific

Rare variants in AKAP9

- African Americans (Logue et al. 2014)
- Hispanic families in ADSP (Vardarajan et al. 2016)

RESEARCH ARTICLE

Whole genome sequencing of Caribbean Hispanic families with late-onset Alzheimer's disease

Badri N. Vardarajan^{1,2,3}, Sandra Barral^{1,2,4}, James Jaworski⁵, Gary W. Beecham⁵, Elizabeth Blue⁶, Giuseppe Tosto^{1,2}, Dolly Reyes-Dumeyer^{1,2}, Martin Medrano⁷, Rafael Lantigua^{1,8}, Adam Naj⁹, Timothy Thornton¹⁰, Anita DeStefano¹¹, Eden Martin⁵, Li-San Wang⁹, Lisa Brown¹⁰, William Bush¹², Cornelia van Duijn¹³, Allison Goate¹⁴, Lindsay Farrer¹¹, Jonathan L. Haines¹², Eric Boerwinkle¹⁵, Gerard Schellenberg⁹, Ellen Wijsman^{6,10}, Margaret A. Pericak-Vance⁵ & Richard Mayeux^{1,2,3,16,17} for The Alzheimer's Disease Sequencing Project^a

Novel Rare Loci in African American GWAS

(Kunkle et al. 2020) *IGFIR:* chr15q26 *AP15:* chr11p12 *RBFOX1:* chr16p13

- **1.** Genetic risk factors for AD can be different defending on your ancestral background
- 2. The mechanisms (pathways) between ancestries appear to be similar, but some pathways may be more important in some ancestries than others
- **3.** ABCA7 is much stronger risk factor for AD in African Ancestry than European
- **4.** ApoE4 is a much weaker risk factor for AD in African Ancestry than European
- 5. The ancestry your patient inherited their *ApoE4* allele from determines their risk for AD from *ApoE4*.
- 6. Different ancestral risks suggest different therapies maybe needed for different ancestries

Some Recent Studies Applying Ancestry to Genetic Studies.

ADMIXTURE MAPPING

```
Molecular Psychiatry
```

www.nature.com/mp

ARTICLE

() Check for update

Admixture Mapping of Alzheimer's disease in Caribbean Hispanics identifies a new locus on 22q13.1

Caghan Kizil^{1,2,3,12}, Sanjeev Sariya^{1,2,4,12}, Yoon A. Kim^{1,5}, Farid Rajabli⁶, Eden Martin^{6,7}, Dolly Reyes-Dumeyer^{1,2,4}, Badri Vardarajan^{1,2,4}, Aleyda Maldonado⁸, Jonathan L. Haines⁹, Richard Mayeux^{1,2,4,10,11}, Ivonne Z. Jiménez-Velázquez⁸, Ismael Santa-Maria^{1,5} and Giuseppe Tosto ^{1,2,4}

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Late-onset Alzheimer's disease (LOAD) is significantly more frequent in Hispanics than in non-Hispanic Whites. Ancestry may explain these differences across ethnic groups. To this end, we studied a large cohort of Caribbean Hispanics (CH, N = 8813) and tested the association between Local Ancestry (LA) and LOAD ("admixture mapping") to identify LOAD-associated ancestral blocks, separately for ancestral components (European [EUR], African [AFR], Native American[NA]) and jointy (AFR + NA). Ancestral blocks significant after permutation were fine-mapped employing multi-ethnic whole-exome sequencing (WES) to identify rare variants associated with LOAD (SKAT-O) and replicated in the UK Biobank WES dataset. Candidate genes were validated studying (A) protein expression in human LOAD and control brains; (B) two animal AD models, Drosophila and Zebrafish. In the joint AFR + NA model, we identified four significant ancestral blocks located on chromosomes 1 (p value = 8.94E-05), 6 (p value = 8.63E-05), 21 (p value = 4.64E-05) and 22 (p value = 1.77E-05). Fine-mapping prioritized the GCAT gene on chromosome 22 (SKAT-O p value = 3.45E-05) and replicated in the UK Biobank (SKAT-O p value = 0.051. In LOAD brains, a decrease of 28% in GCAT protein expression was observed (p value = 0.038), and GCAT knockdown in Amyloid- β_{42} Drosophila exacerbated rough eye phenotype (68% increase, p value = 4.84E-09). In zebrafish, *gcat* expression increased after acute amyloidosis (34%, p value = 0.0049), and decreased upon anti-inflammatory Interleukin-4 (39%, p value = 2.3E-05). Admixture mapping runovered genomic regions harboring new LOAD-associated loci that might explain the observed to target the frequency of LOAD across ethnic groups. Our results suggest that the inflammation-related activity of GCAT is a response to amyloid toxicity, and reduced GCAT expression exacerbates AD pathology.

Molecular Psychiatry; https://doi.org/10.1038/s41380-022-01526-6

Admixture mapping identifies novel Alzheimer disease risk regions in African Americans.

Farid Rajabli¹, Giuseppe Tosto², Kara L. Hamilton-Nelson¹, Brian W. Kunkle¹, Badri N. Vardarajan², Adam Naj³, Patrice G. Whitehead¹, Olivia K. Gardner¹, William S. Bush⁴, Sanjeev Sariya², Richard P. Mayeux², Lindsay A. Farrer⁵, Michael L. Cuccaro^{1,6}, Jeffrey M. Vance^{1,6}, Anthony J. Griswold^{1,6}, Gerard D. Schellenberg³, Jonathan L. Haines⁴, Goldie S. Byrd⁷, Christiane Reitz², Gary W. Beecham^{1,6}, Margaret A. Pericak-Vance^{1,6}, Eden R. Martin^{1,6*}, for the Alzheimer's Disease Genetics Consortium (ADGC), Collaboration on Alzheimer's Disease Research (CADRE) and Alzheimer's Disease Sequencing Project (ADSP) (*IN PRESS, ALZ DIS & DEMENTIA*)

Why Admixture Mapping ?

 The admixture mapping has a lower multiple testing burden than SNP-based GWAS studies

Identifies wide genomic regions that might harbor multiple risk loci

Admixture Mapping

Admixture Mapping Results

Fine-Mapping

(ii) Differential Gene-expression Analysis

Significant differential gene-expression results of peripheral blood and postmortem brain tissues studies^{*}

LOCUS	GENE NAME
Chr.17p13.2	GP1BA
	SLC25A11
	MINK1
Chr. 18q21.33	BCL2

(*) Griswold et al, 2019; ROSMAP, MSBB, Mayo

Summary

- We identified two novel genome-wide significant admixture mapping signals in AA population:
 - on chromosomes 17p13.2 and 18q21.33
- Our study generalized the European genetic AD risk locus (17p13.2) to the AA population.
- Our ancestry-aware analysis showed that AA individuals have a lower risk of AD if they inherited African ancestry at the 17p13.2 locus
- Our fine-mapping revealed several interesting candidate genes, some of which were implicated to contribute to AD risk such as *SLC25A11*, *MINK1* and *BCL2*.

IDENTIFYING THE APOE PROTECTIVE EFFECT

A locus at 19q13.31 significantly reduces the *ApoE* ε4 risk for Alzheimer's Disease in African Ancestry **PLOS GENETICS, 2022**)

Farid Rajabli¹, Gary W. Beecham^{1,2}, Hugh C. Hendrie³, Olusegun Baiyewu⁴, Adesola Ogunniyi⁴, Sujuan Gao⁵, Nicholas A. Kushch¹, Marina Lipkin-Vasquez¹, Kara L. Hamilton-Nelson¹, Juan I. Young^{1,2}, Derek M. Dykxhoorn^{1,2}, Karen Nuytemans^{1,2}, Brian W. Kunkle^{1,2}, Liyong Wang^{1,2}, Fulai Jin⁶, Xiaoxiao Liu⁶, Briseida E. Feliciano-Astacio⁷, Alzheimer's Disease Sequencing Project, Alzheimer's Disease Genetic Consortium, Gerard D. Schellenberg⁸, Clifton L. Dalgard⁹, Anthony J. Griswold^{1,2}, Goldie S. Byrd¹⁰, Christiane Reitz¹¹, Michael L. Cuccaro^{1,2}, Jonathan L. Haines¹², Margaret A. Pericak-Vance^{1,2}, Jeffery M. Vance^{1,2}*

Identifying the Protective effect of the African genome for ApoE4

Due to local ancestry surrounding ApoE

New protective locus for ApoE4 (Rajabli et al 2022)

Interaction with ApoE4 in 6,500 African Americans

- This study identified a new African ancestry-specific haplotype that reduces the AD risk effect of APOE ε4 homozygotes in African ancestry by approximately 75%.
- 2 mB from ApoE and lack of known AD genes surrounding rs10423769 suggests novel mechanism of protection
- Located in area of high segmental DNA duplications
- Rs10423769 is a splicing qTL for TMEM145, expressed in brain, highest in cerebellum

Welcome to the Alzheimer's Disease Sequencing Project

The overarching goals of the ADSP are to:

- Identify new genomic variants contributing to increased risk of developing Late-Onset Alzheimer's Disease (LOAD)
- 2. Identify new genomic variants contributing to protection against developing Alzheimer's Disease (AD)
- 3. Provide insight as to why individuals with known risk factor variants escape from developing AD
- Examine these factors in multi-ethnic populations as applicable in order to identify new pathways for disease prevention

Study Design Learn about study design, sample election, and data generation procedures

Apply for Data

Access Data

News

- Wednesday, March 3, 2021 09:15
 NIAGADS DSS Releases
 Additional 17K Whole Genomes
- Wednesday, February 19, 2020 -15:30
 NIAGADS DSS Releases 20K
 Whole Exomes
- Monday, November 5, 2018 20:30 Additional ADSP Data Released on NIAGADS DSS
- Friday, September 7, 2018 19:15
 NIAGADS Data Sharing Service
 Now Accepting Applications
- Friday, April 13, 2018 18:15
 Genetic variation paper published in Dementia and Geriatric Cognitive Disorders

Funded by: National Institute For Aging

https://www.niagads. org/adsp/content/ho me

Home About Data Access Study Info Contacts Links

© 2013 University of Pennsylvania Perelman School of Medicine

Alzheimer's Disease Sequencing Project Follow-up Study (ADSP-FUS)*

Global Effort to Generate Whole Genome Sequencing in Alzheimer's Disease

Identify new genomic variants contributing to increased risk of developing and protection against Alzheimer's Disease (AD)

Examine these factors in multi-ethnic populations as applicable in order to identify new pathways for disease prevention

*https://www.niagads.org/adsp/content/home

Cases

Unaffected

ADRD/ Mild Cognitive Impairment (MCI)/ PSP

r4 (36k) initial release Fall 2022

Recruitment and Retention for AD Diversity Genetic Cohorts in the ADSP (REAAD-ADSP)

REAAD-ADSP GOALS

- DNA, RNA, Plasma Biomarkers and CVD markers and extensive phenotyping
- Whole Genome Sequencing
- Social Determinants of Health (SDOH) also influence AD risk, but studies collecting both biological and SDOH data are rare. *Collecting SDOH data provides a basis for the integrative studies of biological and social risks of AD.*

Dr. Joshua Akinyemi (University of Ibadan, Nigeria)

ADSP FOREIGN COHORTS

- Gwangju Alzheimer's & Related Dementias (GARD) Study Korea
 - <u>PI</u>: Lindsay Farrer (Boston University)
 - <u>Korea site PI</u>: Kunho Lee (Chosun University)
- Aspirin in Reducing Events in the Elderly (ASPREE) Trial cohort Australia
 - <u>PI</u>: Paul Lacaze (Monash University)
- Interaction between SARS-CoV-2 Infection and Ancestral genomic Variations in the Risk of Alzheimer's Disease and Related Disorders (ISAVRAD) - Argentina
 - PI: Gabriel De Erausquin (UT San Antonio)
- Longitudinal Aging Study in India Diagnostic Assessment of Dementia (LASI-DAD) – India
 - <u>PI</u>: Jincook Li (University of Southern California)

Asian Cohort for Alzheimer's Disease

Asian Cohort for Alzheimer's Disease

- **R56 phase: 1,000 Chinese in US and Canada**, additional pilots for Vietnamese and Korean Americans at two sites
- Eventually 5,000 participants in 5 years: Chinese / Korean / Vietnamese Ancestry in US and Canada
- Culturally appropriate recruitment and assessment
- DNA for genetics and plasma for blood-based biomarkers

Li-San Wang (王立三) University of Pennsylvania, Pl

Helena Chui University of Southern California, PI

Gyungah Jun (전,경아) Boston University, Pl

Van Park (Tạ Mỹ Vân) University of California San Francisco, Pl

ACAD Strategy

- 3-Part Data Collection Packet based on NACC UDS; translated into Chinese, Vietnamese, Korean
- Translated validated cognitive test instruments
- Training/outreach material and REDCap data capture
- Recruitment started in September 2021; >1000 signed up, ~500 completed assessment
- Community-Based Participatory Research (CBPR)
- Interdisciplinary team/international collaboration

Studies in Amerindian populations in South America

Principal Investigators

Giuseppe Tosto Columbia

Mario Cornejo-Olivas San Marcos Foundation and Instituto Nacional de Ciencias Neurologicas (NRC)

Nilton Custodio Instituto Peruano de Neurociencias

Enrollment

- 1,700 dementia cases and 1,850 healthy controls
 - 7 sites in Peru
 - 1 site in Bolivia

Eden R. Martin University of Miami

Margaret Pericak-Vance University of Miami

International Expansion: ADSP and Collaborators

- Genetic risk factors for AD can be different depending on your ancestral background
- The mechanisms (pathways) between ancestries appear to be similar, but some genes/pathways may be more important in some ancestries than others
- Investigating the relationship between genetic ancestry, SDOH and disease may inform precision medicine initiatives, risk assessment, and development of ancestry-specific therapeutics and prevention strategies
- ADSP FUS focused on increasing Asian, African and Hispanic/Latino Ancestry Participants

Critical need to significantly increase diversity in genomic analyses to truly achieve the ability to conduct cross-ancestry comparisons and clarify differences in genetic etiology and potential molecular therapeutic targets

Members of the Alzheimer's Disease Sequencing Project (ADSP) Follow-Up Study Implementation Team

University of Miami Margaret Pericak-Vance Brian Kunkle Jeffery M Vance Michael Cuccaro Eden Martin Anthony Griswold Pedro Mena Larry Adams Patrice Whitehead Jovita Inciute

Columbia University

Richard Mayeux Giuseppe Tosto Badri Vardarajan Dolly Reyes

NCRAD

Tatiana Faroud Clifton Dalgard Kelley Faber Kelly Nudelman

USUHS University of Pennsylvania

Jerry Schellenberg Li-San Wang Adam Naj Fanny Leung

Thanks to all the researchers and collaborators who have contributed cohorts and to all the patients who have participated in the studies

Marilyn Miller Alison Yao Damali Martin