



Neuropathology Brain Bank at Mount Sinai

## Computer Vision & Machine Learning in Digital Neuropathology Kurt Farrell, PhD

Assistant Professor, Department of Pathology, Icahn School of Medicine at Mount Sinai Fall ADRC meeting, Chicago 2022

## Outline

- Overview on AI /machine learning in digital pathology
- Current work: machine learning approaches to investigate tau pathology
  - Supervised
  - Semi-supervised
  - Unsupervised



Harrison et. al. Arch Pathol Lab Med 2021

## **Types of Machine Learning Models**



Modified from Harrison et. al. Arch Pathol Lab Med 2021

## **Machine learning fundamentals**



Harrison et. al. Arch Pathol Lab Med 2021

### Muffin or chihuahua?



## A neural network for NFT detection

а



*n*=3177 NFT patches

b



Performance of the fully convolutional neural network for NFT detection

| Metrics                                          | Training/Validation | Testing |
|--------------------------------------------------|---------------------|---------|
| Recall, TP/(TP+FN), Sensitivity                  | 0.91                | 0.92    |
| Precision, TP/(TP+FP), PPV                       | 0.80                | 0.72    |
| F1 score (harmonic mean of precision and recall) | 0.85                | 0.81    |

Signaevski, Prastawa, Farrell et al., Laboratory Investigations 2019

## Al quantification of NFT correlates with cognitive status



### Odds of being cognitively impaired at death

| Measure of Tau Burden   | Unadjusted |             |         | Age Adjusted |             |         |
|-------------------------|------------|-------------|---------|--------------|-------------|---------|
|                         | OR         | 95% CI      | p value | OR           | 95% CI      | p value |
| Braak NFT stage         | 1.09       | 0.94 - 1.26 | 0.2769  | 0.90         | 0.77 - 1.05 | 0.1691  |
| AI-detected NFT density |            |             |         |              |             | *       |
| Entorhinal Cortex       | 1.38       | 1.18 - 1.61 | 0.0001  | 1.23         | 1.06 - 1.43 | 0.0430  |
| Hippocampus             | 1.40       | 1.20 - 1.64 | 0.0001  | 1.21         | 1.04 - 1.41 | 0.0588  |
| Combined                | 1.45       | 1.24 - 1.70 | >0.0001 | 1.26         | 1.08 - 1.47 | 0.0415  |

# NFT spatial clustering is higher in subjects with cognitive a





Marx et al, Acta NP Com. (accepted), 2022

## Conclusions

- A.I. based counting of individual tangles across the medial temporal lobe was the strongest predictor of cognitive impairment when adjusting for age
- Despite including PART "possible" subjects (CERAD=1) A.I. based measures were still able to accurately predict cognitive status
- Novel graph theory spatial clustering modeling predicted cognitive status

## Weakly supervised deep learning pipeline



## Micro-anatomic focus of model attention reveals changes in white matter



Non-Cognitively Impaired  $\sigma$ 

\*\*\* 60000 \*\*\* Median Dark Blue Pixels \*\*\* . . 0  $\ominus$  (NCI)  $\ominus$  (NCI) Label + (CI) + (CI) Model + (CI)  $\ominus$  (NCI) + (CI)  $\ominus$  (NCI) Prediction

С

Annotation Heatmaps:

- Red = (+) Dark blue pixels
- Blue = (+) Light blue pixels

## Conclusions

- Despite noisy labels of cognitive impairment, we found that our trained models performed significantly above chance level at predicting the presence or absence of cognitive impairment.
- Interpretation studies showed that on a macroanatomic level, the models had higher attention on white matter than gray matter. And on a microanatomic level, the highest attention tiles showed differences in dark blue staining intensity, suggestive of differences in myelin density.



## Generative Adversarial Networks: Unsupervised Learning to Analyzing Neurofibrillary Tangle Morphology



## Generative adversarial network (stylegan2)

С









b

**Training data** 



Synthetic (fake)

Unpublished

# GAN latent space vectors can mimic the progression of neurofibrillary degeneration

### Braak NFT cytoskeletal sequence



### Latent space vectors

Soma size

Inclusion density

**Neurite density** 





Unpublished

## Conclusions

- GANs can be used to generate highly realistic synthetic microscopic pathology data that accurately captures the full breadth of biologic morphology.
- GAN latent space contains key morphological features of NFT which recapitulate the process of neurodegeneration and tangle evolution.
- GAN-based unsupervised learning is a promising approach to histopathological staging of neurodegenerative disease.





## Thank you

#### The computational Pathology Unit

Andy McKenzie Gabe Marx Justin (Jay) Kauffman Daniel Koenigsberg Bergan Babrowicz

#### **Crary Laboratory**

Soong Kim Kristen Whitney Maggie Krassner Sean Delica

### Neuropathology Brain Bank and Research CoRE

Emma Woodoff-Leith Valeriy Borukhov Etty Cortes Ruth Walker Melissa J. Nirenberg Alessandra Cervera Diana Dangoor Ricky Ditzel Thomas Christie Diana Dangoor Rotating volunteer staff and Interns

### **ADRC REC Grant**

UT Southwestern

Charles White III

#### **Mount Sinai**

The Hasso Plattner Institute for Digital Health: Thomas Fuchs, Gabriele Campanella Neuropathology: Jamie Walker, Tim Richardson

### CosyPath and the Dept. of Pathology, Molecular & Cell based Medicine

Carlos Cordon-Cardo Jack Zeineh Gerardo Fernandez Marcel Prastawa Maxim Signaevski

### The PART Working Groups

**Funding:** NIA (K01 AG070326, R01 AG062348. R01 AG054008, NIRG-15-363188), NINDS (R01 NS095252), Tau Consortium/Rainwater Foundation, Alexander Saint-Amand Scholar Award, Louis V. Gerstner Jr. Foundation, David Werber foundation

## **Questions?**





## Fully supervised machine learning pipeline



Signaevski, Prastawa, Farrell et al., Laboratory Investigations 2019