Mitochondrial polygenic risk scores for Alzheimer's Disease

Shea Andrews, PhD

Icahn School of Medicine at Mount Sinai, New York ADRC Spring Meeting May 13th 2022

Icahn School of Medicine at **Mount** Sinai

The mitochondrial DNA is a maternally inherited genome dedicated to generation of cellular energy

Mitochondria are involved in fundamental cellular processes

- Oxidative phosphorylation
- Calcium storage
- Apoptotic signaling
- Immunometabolism

Mitochondrial genome

- 13 protein coding genes involved in the respiratory chain
- 22 tRNA and 2 rRNA

Mitochondrial haplogroups represent sets of similar haplotypes defined by SNVs that arrose as a result of sequential accumulation of mutations during prehistoric human migrations

One cell, two genomes: The nuclear genome contains 1,136 genes encoding proteins that localize to the mitochondria

One cell, two genomes: To ensure optimal cellular function, the cell must coregulate two physically separated and evolutionarily distinct genomes.

Isaac, R. S., McShane, E. & Churchman, L. S. Annu Rev Genet 52, 511–533 (2018).

Do genetic risk variants for AD located within nuclear-encoded mitochondrial genes influence risk of AD and do mito-nuclear interactions further influence AD risk.

Genome-wide association studies have identified ~100 loci associated with Alzheimer's disease

Pathway-based polygenic risk scores (PRS) estimate the genetic liability to disease that is enriched within genomic pathways

Mitochondrial Haplogroups

- ▶ Resequenced mitochondrial genomes for 612 participants using Phy-Mer
- ▶ 138 typed and 88 imputed SNPs in 435 participants using HaploGrep2

Mitochondrial Haplogroups

- ▶ Resequenced mitochondrial genomes for 612 participants using Phy-Mer
- ▶ 138 typed and 88 imputed SNPs in 435 participants using HaploGrep2

Nuclear-encoded mitochondrial PRS for AD

- ▶ Base dataset: Kunkle 2019 AD GWAS
- ► Target dataset: ADNI
- ▶ SNPs assigned to nuclear mitochondrial genes, ± 50kb of gene region
- Pruning ($r^2 = 0.1$; window = 250kb) and thresholding (p < 0.5) using PRSice

Mitochondrial Haplogroups

- ▶ Resequenced mitochondrial genomes for 612 participants using Phy-Mer
- ▶ 138 typed and 88 imputed SNPs in 435 participants using HaploGrep2

Nuclear-encoded mitochondrial PRS for AD

- Base dataset: Kunkle 2019 AD GWAS
- ► Target dataset: ADNI
- ▶ SNPs assigned to nuclear mitochondrial genes, ± 50kb of gene region
- Pruning $(r^2 = 0.1; window = 250kb)$ and thresholding (p < 0.5) using PRSice

Cross-sectional analysis: Effect of the MT-hgs and nMT-PRS on baseline risk of dementia

- binomial multivariate logistic regression models
- ▶ adjusting for age, APOE status, sex, and the first 2 principal components

Mitochondrial Haplogroups

- ▶ Resequenced mitochondrial genomes for 612 participants using Phy-Mer
- ▶ 138 typed and 88 imputed SNPs in 435 participants using HaploGrep2

Nuclear-encoded mitochondrial PRS for AD

- ▶ Base dataset: Kunkle 2019 AD GWAS
- ► Target dataset: ADNI
- ▶ SNPs assigned to nuclear mitochondrial genes, ± 50kb of gene region
- Pruning $(r^2 = 0.1; window = 250kb)$ and thresholding (p < 0.5) using PRSice

Cross-sectional analysis: Effect of the MT-hgs and nMT-PRS on baseline risk of dementia

- binomial multivariate logistic regression models
- ▶ adjusting for age, APOE status, sex, and the first 2 principal components

Survival analysis: Effect of the MT-hgs and nMT-PRS on Alzheimer's age of onset

- ▶ cox proportional hazards model
- age was used as the time to event scale
 - Cognitively normal or living with MCI at baseline: AD age at onset
 - Living with AD at baseline: the reported best estimate of onset of AD-dementia symptoms
- adjusting for APOE status, sex, and the first 2 principal components

Evaluated the main effects of the MT-hgs and the nMT-PRS and their interaction on the likelihood of participants having AD at baseline.

Main Effects (Model 1)

MT-hg K: OR: 2.00 [95% CI: 1.04, 3.97]
MT-hg U: OR: 1.99 [95% CI: 0.99, 3.97]
nMT-PRS: OR: 2.2 [95% CI: 1.68, 2.86]

Interaction Model (Model 2)

a significant interaction was observed between the nMT-PRS and:

▶ MT-hg T: OR: 0.22 [95% CI: 0.1, 0.49] RERI -2.8 (95% CI:

4.33, 1.26)

▶MT-hg K: OR: 0.45 [95% CI: 0.22, 0.9] RERI -3.56 (95% CI:

5.54, 1.57)

Table 2

Association of a mitochondrial PRS and mitochondrial haplogroups (model 1) and their interactions (model 2) with baseline risk of Alzheimer's disease

Variable	Model 1			Model 2		
	β^{a}	SE	р	β	SE	р
Age	0.02	0.02	0.213	0.03	0.02	0.122
Male	-0.01	0.22	0.975	-0.09	0.23	0.682
APOE status						
ε4+	1.2	0.24	6.47E-07	1.25	0.25	5.08E-07
ε2+	-0.7	0.58	0.227	-0.88	0.6	0.142
PC1	-0.14	0.13	0.274	-0.1	0.13	0.423
PC2	0.53	0.55	0.332	0.42	0.55	0.442
nMT-PRS	0.79	0.14	5.58E-09	1.09	0.2	5.68E-08
Haplogroup)					
Ι	0.27	0.62	0.661	0.33	0.63	0.6
J	0.09	0.4	0.827	0.06	0.44	0.886
K	0.694	0.35	0.049	0.71	0.34	0.038
Т	-0.23	0.4	0.564	0.04	0.38	0.909
U	0.687	0.35	0.052	0.81	0.38	0.033
v	0.01	0.63	0.988	0.07	0.76	0.926
W	0.66	0.9	0.464	0.74	0.86	0.391
Х	-1.23	1.13	0.278	-2.04	1.77	0.247
Haplogroup \times nMT-PRS						
Ι	-	-	-	-0.38	0.84	0.647
J	-	-	-	0.28	0.68	0.685
K	-	-	-	-0.8	0.36	0.026
Т	-	-	-	-1.51	0.41	2.18E-04
U	-	-	-	0.07	0.52	0.886
v	-	-	-	1.01	1.44	0.482
W	-	-	-	-0.68	0.85	0.425
Х	-	-	-	-2.31	1.97	0.24 13

Evaluated the main effects of the MT-hgs and the nMT-PRS and their interaction on Alzheimer's Age of Onset

Main Effects (Model 1)

nMT-PRS: HR: 1.44 [95% CI: 1.28, 1.61]

Interaction Model (Model 2)

significant interaction was observed between the nMT-PRS and:

MT-hg T: HR: 0.62 [95% CI: 0.42, 0.91] RERI: -0.7 (95% CI: -

1.24, -0.16)

MT-hg V: HR: 2.28 [95% CI: 1.19, 4.35] RERI: 1.06 (95% CI: -

0.9, 3.02)

Table 3

Association of a mitochondrial PRS and mitochondrial haplogroups (model 1) and their interactions (model 2) with Alzheimer's disease age of onset

Variable	Model 1			Model 2					
	β^{a}	SE	р	β^{a}	SE	р			
Male	-0.21	0.1	0.0034	-0.22	0.1	0.028			
APOE status									
$\epsilon 4+$	0.8	0.12	6.50E-12	0.78	0.12	2.70E-11			
ε2+	-0.85	0.39	0.029	-0.86	0.39	0.027			
PC1	-0.11	0.06	0.073	-0.1	0.06	0.104			
PC2	0.03	0.04	0.525	0.03	0.04	0.509			
nMT-PRS	0.36	0.06	3.54E-10	0.37	0.08	2.55E-06			
Haplogroup									
I	-0.01	0.26	0.958	0.04	0.28	0.879			
J	-0.06	0.17	0.707	-0.09	0.19	0.635			
К	-0.06	0.18	0.742	-0.05	0.18	0.78			
Т	-0.31	0.17	0.073	-0.14	0.18	0.422			
U	-0.1	0.15	0.528	-0.16	0.17	0.35			
V	0.17	0.28	0.549	-0.26	0.38	0.496			
W	0.38	0.33	0.247	0.38	0.33	0.241			
Х	0.08	0.32	0.794	0.16	0.36	0.664			
Haplogroup \times nMT-PRS									
Ι	-	-	-	-0.14	0.29	0.617			
J	-	-	-	0.08	0.22	0.72			
К	-	-	-	-0.06	0.17	0.74			
Т	-	-	-	-0.48	0.2	0.015			
U	-	-	-	0.14	0.15	0.371			
v	-	-	-	0.82	0.33	0.013			
W	-	-	-	0.13	0.34	0.697			
Х	-	-	-	-0.13	0.32	0.68 14			

Evaluate the association of pathway specific mitochondrial PRS with AD

Nuclear-encoded mitochondrial pathway PRS for AD

- Base dataset: Kunkle 2019 AD GWAS
- Target dataset: ADNI
- ▶ SNPs assigned to nuclear mitochondrial genes, ± 50kb of gene region
- Pruning $(r^2 = 0.1; window = 250kb)$ and thresholding (p < 0.5) using PRSet
- Mitochondrial pathways: 12 gene sets obtained from the Molecular signatures database
 - 1. Mitonuclear cross talk
 - 2. Calcium homeostasis and transport
 - 3. Apoptotic mitochondrial changes
 - 4. Mitochondrial fusion
 - 5. Fatty acid and beta oxidation
 - 6. Mitochondrial fission and regulation

- 7. Mitophagy and regulation
- 8. Mitochondrial membrane potential regulation
- 9. Hallmark oxidative phosphorylation
- 10. Mitochondrial transport
- 11. Response to oxidative stress
- 12. All mitochondrial genes

Effect of the pathway nMT-PRS on risk of dementia at last assessment

- binomial multivariate logistic regression models
- ▶ adjusting for age, APOE status, sex, and education, the first 3 principal components

Effect of the pathway nMT-PRS on risk CSF Aβ & tau, and cognitive function

- ▶ multivariate linear regression models
- ▶ adjusting for age, APOE status, sex, and education, the first 3 principal components

Devashi Paliwal

Specific mitochondrial pathway polygenic risk scores are associated with Alzheimer's Disease

Association of pathway specific nMT-PRS on AD endophenotypes

Hallmark oxidative phosphorylation: Increased CSF Tau levels

Response to oxidative stress: Higher ADAS Cog-score and lower mPACCdigit score

Mitochondrial fission and regulation & Mitophagy and regulation: lower mPACCdigit score

- 1. Genetic liability for AD is enriched in nuclear mitochondrial genes and increase AD risk
- 2. Genetic variation on the nuclear- and mitochondrial- genomes interact to influence risk of Alzheimer's disease
- 3. Genetic variation with specific mitochondrial pathways is associated with increased risk of Alzheimer's disease

Acknowledgements

MitoWAX

Russ Swerdlow

Judy D Pa P

Devashi Nadia Paliwal Harerimana

Carmen Tim Romero-Molina McInerney

alzheimer's \mathfrak{R} association[•]

NIH National Institute on Aging

The Andrews Lab is now hiring!

University of California San Francisco

