

Tau PET harmonization strategies for multicenter natural history and/or interventional studies

Victor L Villemagne

Disclosures

- Sources of Research Support:
 - NHMRC IDEAS Grant G1005121 (AUS)
 - NIDA 75N95021P00444
 - NIA AG025516-12A1
 - NIA AG066468-02
 - Aging Mind Foundation DAF2255207

Consulting Relationships:

- IXICO
- Life Molecular Imaging
- Eli Lilly
- Hospicom

• Stock Equity:

• None. (Not a gambler)

- Speaker's Honoraria:
 - Avid Radiopharmaceuticals
 - Life Molecular Imaging
 - Eli Lilly
 - ACE Barcelona
 - International Atomic Energy Agency

• Editorial Boards:

- Alzheimer's Research & Therapy
- J Neurochemistry
- Eur J Nucl Med Mol Imaging
- ♦ Fees > \$10,000
 - N/A. Not that lucky (but open to offers) (Please see me at the end of the presentation, or email me an offer I can't refuse to victor.villemagne@gmail.com)

Background

- Over the past decade, several PET tracers have been developed to visualise and quantify brain tau pathology in vivo.
- However, all these tracers have distinct off-target signal, different dynamic ranges and likely different levels of non-specific binding resulting in large variability in their semiquantification.
- We propose to standardise the sampling and the quantification across all available tau tracers using a universal mask and scale.

Aims

Develop and implement a stereospecific universal standard approach to generate both continuous and categorical [AT(N)] measures enabling direct data comparisons and/or data pooling across sites and studies using differing tracers, acquisitions, scanners, or analysis methods, aimed at improving the *early* detection of tau deposition as well as its progression over time and its use in disease-specific anti-A β and/or ant-tau therapeutic trials.

TRAILBLAZER-ALZ iADRS

DONANEMAB IS THE FIRST PLAQUE CLEARING AGENT TO ACHIEVE A DISEASE MODIFICATION PRIMARY ENDPOINT

AT(N) biomarker staging

Alzheimer's & Dementia 14 (2018) 535-562

Alzheimer's

ی Dementia

2018 National Institute on Aging—Alzheimer's Association (NIA-AA) Research Framework

NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease

Clifford R. Jack, Jr.,^{a.e.}, David A. Bennett^b, Kaj Blennow^c, Maria C. Carrillo^d, Billy Dunn^e, Samantha Budd Haeberlein⁷, David M. Holtzman⁸, William Jagust^h, Frank Jessen¹, Jason Karlawish¹, Enchi Liu^k, Jose Luis Molinuevo¹, Thomas Montine^m, Creighton Phelpsⁿ, Katherine P. Rankin⁹, Christopher C. Rowe^p, Philip Scheltens⁴, Eric Siemers^r, Heather M. Snyder^d, Reisa Sperling⁶ **Contributors[†]:** Cerise Elliott, Eliezer Masliah, Laurie Ryan, and Nina Silverberg

AT(N) profiles	Biomarker category		AT(N) profiles	Biomarker category	
A-T-(N)-	Normal AD biomarkers		A-T+(N)-	Non- AD pathologic change	
A+T-(N)-	Alzheimer's pathologic change		A-T-(N)+	Non- AD pathologic change	
A+T+(N)-	Alzheimer's disease		A-T+(N)+	Non- AD pathologic change	
A+T+(N)+	Alzheimer's disease	Alzheimer's continuum*			
A+T-(N)+	Alzheimer's and concomitant suspected non Alzheimer's pathologic change				

A/T/(N): Three-marker neuroimaging/biofluid signature

A β -pathology

Aβ imaging

Selective brain-derived T-tau

A β =beta-amyloid; CSF=cerebrospinal fluid; FDG=fluorodeoxyglucose

Adapted from: La Joie et al. J Neurosci 2012;32(46):16265-16273; Jack et al. Neurology 2016;87(5):539-547

What Is T+? A Gordian Knot of Tracers, Thresholds, and Topographies

Victor L. Villemagne^{1–3}, Brian J. Lopresti⁴, Vincent Doré^{5,6}, Dana Tudorascu¹, Milos D. Ikonomovic^{1,7}, Samantha Burnham^{6,8}, Davneet Minhas⁴, Tharick A. Pascoal¹, N. Scott Mason⁴, Beth Snitz¹, Howard Aizenstein¹, Chester A. Mathis⁴, Oscar Lopez¹, Christopher C. Rowe^{2,5}, William E. Klunk^{1,7}, and Ann D. Cohen¹

J Nucl Med. 62:614-619, 2021

• WHERE TO LOOK?

- What are the optimal regions for the *early* and *longitudinal* detection of tau deposition?
- Regions based on neuropathology or data driven approaches?
- Braak-like ROI? Temporal composite region? Entorhinal and Inf Temporal? MeTeR scale? Voxelwise approaches?
- What is considered Tau+? Just cortical tau? MTL? Cortical and MTL?
- What is the meaning/relevance of MTL tau?, what MTL tau level is considered part of aging (PART) and what MTL tau level is considered part of AD?
- HOW TO ESTABLISH THRESHOLDS? (and for what PURPOSE and for what APPLICATION?)
 - Young or elderly controls? CSF p-tau (which one?)? Visual? Risk of progression? Reliable worsening method? Specificity threshold? Multiple thresholds?
- BETTER TRACER CHARACTERIZATION
 - Idiosyncrasies/differences. Stability of reference regions.
 - Degree of non-specific binding.
 - Neuropathology/pathophysiological approach.

Why do we need harmonization? A β imaging

Images generated with CapAIBL® (capaibl-milxcloud.csiro.au) CSIRO Biomedical Imaging Group

Comparison of ¹⁸F-amyloid ligands vs ¹¹C-PiB

Discriminatory power of A β tracers

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

-20 -10

10 20 30 40

adapted from Mormino et al., Neurology, 2014

Centiloid transformation

The centiloid project: Standardizing quantitative amyloid plaque estimation by PET

William E. Klunk^{a,b,*}, Robert A. Koeppe^c, Julie C. Price^d, Tammie L. Benzinger^{e,f}, Michael D. Devous, Sr.,^{g,h}, William J. Jagustⁱ, Keith A. Johnson^{e,j}, Chester A. Mathis^k, Davneet Minhas^d, Michael J. Pontecorvo^l, Christopher C. Rowe^m, Daniel M. Skovronsky^l, Mark A. Mintun

Defines the 0 (young controls) and 100 (mild AD+) anchor points Spatial normalization w/ SPM8 of MRI and co-registered PET into MNI-158

Standard VOIs

One Cortical VOI (A β + areas after subtracting EC from AD) Four reference regions: WCB - CBGREY - WCB+PONS - PONS

SAAIN Centiloid 80

Alzheimer's

ىچى Dementia

GAAIN PIB SUVR

20

2.5

3.0

15

0.5

1.0

Images & VOI available at the Global Alzheimer's Association Information Network (GAAIN; http://www.gaain.org)

$A\beta$ imaging in Alzheimer's disease

A β tracer-specific noise

PiB: Klunk et al., Alzheimer Dement, 2015.

- NAV: Rowe et al., J Nucl Med, 2016.
- FBB: Rowe et al., EJNMMI, 2017.
- FBP: Navitsky et al., Alzheimer Dement, 2018.
- FLT: Battle et al., EJNMMI Research, 2018.

Centiloid Thresholds

Neuropathology

	PiB	(La Joie et al., Alzheimers Dement. 2019)	12-24 CL
	Florbetaben	(Doré et al., Alzheimers Dement 2019, Bullich et al., AR&T, 2021)	13-21-36 CL
	Florbetapir	(Navitsky et al., Alzheimers Dement. 2018)	24 CL
	Flutemetamol	(Battle et al., EJNMMI Res. 2018)	(25-30 CL)*
Specificity	threshold	(95%ile YC)	
	PiB	(Su et al., Neuroimage: Clinical. 2018)	6-12 CL
Reliable w	orsening n	nethod	
	PiB	(Jack et al., Alzheimers Dement. 2017)	19 CL
	PiB	(Su et al., Neuroimage: Clinical. 2018)	11 CL
CSF			
	Flutemetamol	(Salvadó et al, Alzheimers Res Ther. 2019)	12-30 CL
Tipping po	pint		
	PiB	(Schindler et al, Neurology, 2021)	7 CL
Clustering			
-	ALL	(Cox & Villemagne, ADOPIC, 2022)	18 CL
Risk of co	anitive dec	line/clinical progression	
	PiB	(extended from Rowe Ann Neurol, 2013)	20 CL
	PiB-FBP	(Farell et al., Neurology, 2021)	15-18.5 CL

Tau Harmonization Universal masks

Towards a universal cortical tau mask

Vincent Doré

Doré & Villemagne, 2022

Tracer-specific masks

AB-HC)

(Aβ+ AD

Towards a universal cortical tau mask

Composite mask (intersection of 6 tracers)

Composite cortical

Composite & mirrored cortical

Towards a universal tau cerebellar mask

¹⁸F-MK6240

¹⁸F-PM-PBB3

¹⁸F-PI2620

¹⁸F-AV1451

0

¹⁸F-RO948

¹⁸F-GTP-1

Towards a universal tau cerebellar mask

¹⁸F-FTP

Towards a universal tau cerebellar mask

Davneet Minhas

Brian Lopresti

Tau Harmonization Universal scale

A tale of CenTauRs

Can we combine results from different tau radiotracers? Can this universal scale be used for longitudinal studies?

- 1. Measures of amplitude/degree of tracer binding/retention
 - a. BP_{ND}/DVR/SUVR (≠tracers w/≠dynamic ranges and thresholds, only categorical -high/low- can be combined)
 - b. Z-score (amenable to combine results from \neq tracers) = CenTauR_Z[©] (Villemagne and Doré)
- 1. Metrics of extent/progression of tracer retention

%Area>threshold(S Sanabria, Genentech; J Seibyl, Invicro)Overlap Index(Lee et al., J Nucl Med, doi:10.2967/jnumed.121.263136, 2022)

- 3. Combination of 1. and 2. (Villemagne and Doré)
 - *a. Regio-*CenTauR_S[©] (BP_{ND}/DVR/SUVR **x** [1+%Area>threshold])
 - *b. Regio-*CenTauR_Z[©] (z-score x [1+%Area>threshold] / or x [1+Overlap Index])

Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring 6 (2017) 21-30

Alzheimer's

Tau-PET uptake: Regional variation in average SUVR and impact of amyloid deposition

Prashanthi Vemuri^{a,*}, Val J. Lowe^a, David S. Knopman^b, Matthew L. Senjem^a, Bradley J. Kemp^a, Christopher G. Schwarz^a, Scott A. Przybelski^c, Mary M. Machulda^d, Ronald C. Petersen^b, Clifford R. Jack, Jr.^a

Towards a universal tau scale

Meta-temporal region

Doré & Villemagne, 2022

Longitudinal analysis

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

Selecting software pipelines for change in flortaucipir SUVR: Balancing repeatability and group separation

Christopher G. Schwarz^{a,*}, Terry M. Therneau^b, Stephen D. Weigand^b, Jeffrey L. Gunter^{a,c}, Val J. Lowe^a, Scott A. Przybelski^b, Matthew L. Senjem^{a,c}, Hugo Botha^d, Prashanthi Vemuri^a, Kejal Kantarci^a, Bradley F. Boeve^d, Jennifer L. Whitwell^a, Keith A. Josephs^d, Ronald C. Petersen^d, David S. Knopman^d, Clifford R. Jack Jr^a NeuroImage 238 (2021) 118259

 Target region
 Reference region
 PVC

 Repeatability (residual error %)
 Point and a state of the state of t

Best performance:

- 1. SUVR approach,
- 2. temporal-lobe meta-ROI that includes adjacent (juxtacortical) WM
- an eroded WM + pons + whole cerebellum reference region
- 4. 2-class voxel-based PVC, and
- 5. median statistics.

Longitudinal analysis

a meta-temporal composite with 1. an eroded subcortical white matter reference ideal İS for early detection and assessment of tau accumulation at the preclinical /prodromal stages of the disease 2. a *temporoparietal composite* with

a *cerebellar cortex reference* would be preferred for trials at the symptomatic AD stages of disease.

Krishnadas et al. (submitted), 2022

Tau Harmonization *Topologies* (where to look?)

Towards a universal tau cortical mask & scale

Temporal composite

The "universal" tau mask for the AD continuum defines the common "tau space" for most tau tracers, not to obtain a "global" tau measure as with A β , but to use a common space over which several different global/regional sampling VOI or composites can be applied, customized for purpose: *early tau detection, clinical trials, etc.*

Braak&Braak

entorhinal/Inf Temporal

Results obtained with different tracers from the same global/regional sampling can be expressed together under the term $CenTauR_z$ (if expressed as z-scores (*Vemuri et al, Neurology, 2017*))

MeTeR scale

Tau imaging across the AD spectrum *(typical cases)*

The temptation of the neuropathological "corset"

Different patterns of regional tau deposition

A Posterior cortical atrophy

D Non-amnestic Alzheimer's disease

Ossenkoppele et al., Brain, 2016

C Amnestic Alzheimer's disease **B** Logopenic variant PPA 4.0 4.0 0.5 0.5 E Behavioral Alzheimer's disease F Corticobasal syndrome 2.7 4.0 0.5 0.5

¹⁸F- AV1451

Tau correlation with cognitive domains

Tau pathological subtypes in AD

¹⁸F-MK6240

Data-driven approaches for tau-PET imaging biomarkers in Alzheimer's disease

Jacob W. Vogel^{1,2} | Niklas Mattsson^{3,4,5} | Yasser Iturria-Medina¹ | Olof T. Strandberg³ | Michael Schöll^{3,6} | Christian Dansereau^{7,8} | Sylvia Villeneuve^{1,9} | Wiesje M. van der Flier^{2,10} | Philip Scheltens² | Pierre Bellec^{7,8} | Alan C. Evans¹ | Oskar Hansson^{3,4#} | Rik Ossenkoppele^{2,3#} | The Alzheimer's Disease Neuroimaging Initiative[†] | The Swedish **BioFINDER Study** Hum Brain Mapp. 2019;40:638-651.

1. Subcortex

2. Frontal

3. Medial/Inferior/

Anterior Temporal

4. Temporo-

parietal

5. Unimodal

Sensory

Imaging data-driven classification

medicine

ARTICLES https://doi.org/10.1038/s41591-021-01309-6

Four distinct trajectories of tau deposition identified in Alzheimer's disease

Jacob W. Vogel ¹²⁴, Alexandra L. Young², Neil P. Oxtoby ^{3,4}, Ruben Smith ^{5,6}, Rik Ossenkoppele^{5,7}, Olof T. Strandberg⁵, Renaud La Joie ^{9,8}, Leon M. Aksman^{3,9}, Michel J. Grothe ^{10,11}, Yasser Iturria-Medina ¹, the Alzheimer's Disease Neuroimaging Initiative¹, Michael J. Pontecorvo ¹², Michael D. Devous ¹², Gil D. Rabinovici ^{8,13}, Daniel C. Alexander ^{3,4}, Chul Hyoung Lyoo ¹⁴, Alan C. Evans ¹ and Oskar Hansson ^{5,15}

Brain connectivity data-driven classification

SCIENCE ADVANCES | RESEARCH ARTICLE

DISEASES AND DISORDERS

Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer's disease

Nicolai Franzmeier¹*, Anna Dewenter¹, Lukas Frontzkowski¹, Martin Dichgans^{1,2,3}, Anna Rubinski¹, Julia Neitzel¹, Ruben Smith^{4,5}, Olof Strandberg⁵, Rik Ossenkoppele^{5,6}, Katharina Buerger^{1,3}, Marco Duering¹, Oskar Hansson^{5,7}, Michael Ewers^{1,3}*

Modeling tau subtype-specific, connectivity-based tau spreading in ADNI

adapted from Franzmeier et al., Sci Adv, 2020

Imaging data-driven classification

Dendrogram and mean flortaucipir distribution

С

Divergent Cortical Tau Positron Emission Tomography Patterns

Among Patients With Preclinical Alzheimer Disease Christina B. Young, PhD; Joseph R. Winer, PhD; Kyan Younes, MD; Karly A. Cody, BS; Tobey J. Betthauser, PhD; Sterling C. Johnson, PhD; Aaron Schultz, PhD; Reisa A. Sperling, MD; Michael D. Greicius, MD, MPH;

Inma Cobos, MD, PhD; Kathleen L. Poston, MD, MS; Elizabeth C. Mormino, PhD; for the Alzheimer's Disease

Neuroimaging Initiative and the Harvard Aging Brain Study

JAMA Neurology | Original Investigation

JAMA Neurol. doi:10.1001/jamaneurol.2022.0676 Published online April 18, 2022.

A multicenter comparison of [¹⁸F]flortaucipir, [¹⁸F]RO948, and [¹⁸F] MK6240 tau PET tracers to detect a common target ROI for differential diagnosis

Antoine Leuzy¹ • Tharick A. Pascoal^{2,3} • Olof Strandberg¹ • Philip Insel^{1,4} • Ruben Smith^{1,5} • Niklas Mattsson-Carlgren^{1,5,6} • Andréa L. Benedet^{2,7} • Hannah Cho⁸ • Chul H. Lyoo⁸ • Renaud La Joie⁹ • Gil D. Rabinovici^{9,10} • Rik Ossenkoppele^{1,11} • Pedro Rosa-Neto^{2,12,13} • Oskar Hansson^{1,14}

European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:2295–2305

"The temporal meta-ROI can be used for differential diagnosis of dementia patients with ¹⁸F-flortaucipir, ¹⁸F-RO948, and ¹⁸F-MK6240 tau PET with high accuracy, and that using very similar cut-offs of around 1.35 SUVR. This ROI/SUVR cut-off can also be applied across tracers to define tau positivity."

Temporal Meta-ROI

How to capture early tau, PART, AD subtypes? MetaTemporal composite

adapted & modified from Jack et al., Brain, 2018

 WHAT TO SAMPLE? Use of a <u>universal tau mask</u> derived from the intersection of six tau tracers to <u>constrain</u> sampling to areas common to all tracers

- WHAT TO SAMPLE? Use of a <u>universal tau mask</u> derived from the intersection of six tau tracers to <u>constrain</u> sampling to areas common to all tracers
- HOW TO MEASURE? SUVR_{cb} expressed as <u>single universal scale</u> (CenTauR_z) with a common threshold

- WHAT TO SAMPLE? Use of a <u>universal tau mask</u> derived from the intersection of six tau tracers to <u>constrain</u> sampling to areas common to all tracers
- HOW TO MEASURE? SUVR_{cb} expressed as <u>single universal scale</u> (CenTauR_z) with a common threshold
- WHERE TO SAMPLE?
 - What are the optimal regions for <u>early</u> detection of tau deposition?
 <u>Meta-Temporal composite</u> (with Cb cortex reference) (used to define T+)
 (captures early cortical tau, PART, as well as three pathological subtypes, and most of the atypical presentations)

Summary

TO ENSURE CONSISTANT AND REPRODUCIBLE T+ CLASSIFICATION ACROSS CENTERS AND STUDIES

- WHAT TO SAMPLE? Use of a <u>universal tau mask</u> derived from the intersection of six tau tracers to <u>constrain</u> sampling to areas common to all tracers
- HOW TO MEASURE? SUVR_{cb} expressed as <u>single universal scale</u> (CenTauR_z) with a common threshold
- WHERE TO SAMPLE?
 - What are the optimal regions for <u>early</u> detection of tau deposition?
 <u>Meta-Temporal composite</u> (with Cb cortex reference) (used to define T+)
 (captures early cortical tau, PART, as well as three pathological subtypes, and most of the atypical presentations)
 What are the optimal regions for <u>longitudinal</u> detection of tau deposition?
 - Meta-Temporal compositefor preclinical stages of the disease (with eroded WM reference)Temporoparietal-Post Cingulate compositefor symptomatic stages of the disease (with Cb cortex reference)

Summary

TO ENSURE CONSISTANT AND REPRODUCIBLE T+ CLASSIFICATION ACROSS CENTERS AND STUDIES

- WHAT TO SAMPLE? Use of a <u>universal tau mask</u> derived from the intersection of six tau tracers to <u>constrain</u> sampling to areas common to all tracers
- HOW TO MEASURE? SUVR_{cb} expressed as <u>single universal scale</u> (CenTauR_z) with a common threshold
- WHERE TO SAMPLE?
 - What are the optimal regions for <u>early</u> detection of tau deposition?
 <u>Meta-Temporal composite</u> (with Cb cortex reference) (used to define T+) (captures early cortical tau, PART, as well as three pathological subtypes, and most of the atypical presentations)

 What are the optimal regions for <u>longitudinal</u> detection of tau deposition?

Meta-Temporal compositefor preclinical stages of the disease (with eroded WM reference)Temporoparietal-Post Cingulate compositefor symptomatic stages of the disease (with Cb cortex reference)

WHAT IS T+? Cortical tau with/without MTL (High MTL tau alone does not constitute T+, but it should be recorded*)

*How innocent is MTL+?

¹⁸F-FTP High MTL tau vs. low MTL tau in $A\beta$ - elderly controls

(performing cognitively within normal limits)

Is MTL tau a harbinger of future cortical tau deposition?

MTL+ – MTL-

significant p<0.05
 significant p<0.01
 significant p<0.0001

adapted from Groot et al. Neurobiol Aging, 2021

Adjusted for age and sex

Summary

TO ENSURE CONSISTANT AND REPRODUCIBLE T+ CLASSIFICATION ACROSS CENTERS AND STUDIES

- WHAT TO SAMPLE? Use of a <u>universal tau mask</u> derived from the intersection of six tau tracers to <u>constrain</u> sampling to areas common to all tracers
- HOW TO MEASURE? SUVR_{cb} expressed as <u>single universal scale</u> (CenTauR_z) with a common threshold
- WHERE TO SAMPLE?
 - What are the optimal regions for <u>early</u> detection of tau deposition?
 <u>Meta-Temporal composite</u> (with Cb cortex reference) (used to define T+) (captures early cortical tau, PART, as well as three pathological subtypes, and most of the atypical presentations)

 What are the optimal regions for <u>longitudinal</u> detection of tau deposition?

Meta-Temporal compositefor preclinical stages of the disease (with eroded WM reference)Temporoparietal-Post Cingulate compositefor symptomatic stages of the disease (with Cb cortex reference)

- WHAT IS T+? Cortical tau with/without MTL (High MTL tau alone does not constitute T+, but it should be recorded*)
- HOW TO ESTABLISH/VALIDATE THRESHOLDS? (for what PURPOSE?: INCREASE SENSITIVITY)
 - Young controls (20-45 yo)
 - Risk of clinical progression

Acknowledgements

University of Pittsburgh

Annie Cohen Milos Ikonomovic Brian Lopresti Davneet Minhas Chester Mathis Scott Mason Beth Snitz Beth Shaaban Thomas Karikari Tharick Pascoal Howard Aizenstein William E Klunk Oscar Lopez

Austin Health

Natasha Krishnadas Rachel Mulligan Fiona Lamb Kung Huang Christopher C Rowe

Avid Radiopharmaceuticals

Mike Devous Mike Navitsky Mike Pontecorvo

Lifetime Molecular Imaging

Andrew Stephens Santi Bullich André Müeller Audrey Perrotin

Genentech

Sandra Sanabria-Bohorquez Robby Weimer

Cerveau

Thom Tulip Rick Hiatt **CSIRO**

Vincent Doré Samantha Burnham Pierrick Bourgeat Jürgen Fripp

Biofinder

Antoine Leuzy Oskar Hansson

Austin

National Institute of Radiological Sciences

Hitoshi Shimada Yuhei Takado Makoto Higuchi

Florey Institute

Jo Robertson Kevin Barnham Colin Masters

Tohoku University

Nobuyuki Okamura Ryuichi Harada Shozo Furumoto Yukitsuka Kudo Kazuhiko Yanai

Funding: Supported in part by NIH Grant AG066468-02, AG073267-01, NHMRC IDEAS Grant G1005121.