

EHR Data for Alzheimer's Disease Research: Opportunities and Challenges for Statistical Analyses

Sujuan Gao, Ph.D.

Indiana Alzheimer's Disease Research Center

Opportunities offered by EHR data

- Large sample size and cost efficient
- Longitudinal data
- Diverse data types
 - History of medical conditions (beyond those collected in UDS)
 - Laboratory results
 - Medication prescription: dose, frequency, and duration
 - Health care utilization (outpatient, ED, hospitalization)
- Population health studies
- Reduced recall bias

Challenges in EHR Diagnosis of AD

- Evaluation:
 - No systematic evaluation
 - Lack of detailed cognitive testing
- Diagnosis
 - Lack of specificity for AD
 - Potential for misdiagnosis
- Time of diagnosis
 - Delay in diagnosis
 - Impact on timely intervention
- These limitations can be overcome by linking with ADRC or AD-focused research data

EHR system at Indiana University

- The first EMR was developed in 1972 by the Regenstrief Institute at IU
 - Regenstrief Medical Record System, a physician-designed, integrated patient information system, was developed and first used in the Wishard Diabetes Clinic.
- Indiana Network for Patient Care (INPC)
 - A state-wide EHR data repository
 - 100+ hospitals, representing 38 health systems
 - 12,000+ practices with over 30,000 providers
 - 12 million+ patients
 - 9 billion clinical data elements

Integrating EHR data at the Indiana ADRC

- Merging EHR data with research data collected from the Indianapolis-Ibadan Dementia Project
 - Changes in glucose level and dementia diagnosis
 - Replication in a large EHR cohort
 - o Antihypertensive medications and dementia risk

Alzheimers Dement. 2017 February ; 13(2): 111-118. doi:10.1016/j.jalz.2016.08.017.	
Glucose level decline precedes dementia in elderly Afric	an
Americans with diabetes Hugh C. Hendrie, MB, ChB, DSc ^{a,b,c,*} , Mengjie Zheng, MS ^d , Wei Li, MD, PhD ^e , Ka Lane, MS ^d , Roberta Ambuehl, MS ^b , Christianna Purnell, BA ^a , Frederick W. Unve Alexia Torke, MD, MS ^{a,b,f} , Ashok Balasubramanyam, MD ^g , Chris M. Callahan, MI Sujuan Gao, PhD ^d	athleen erzagt, PhD ^c , D ^{a,b,f} , and <i>Alzheimers Dement.</i> 2018 December ; 14(12): 1572–1579. doi:10.1016/j.jalz.2018.03.008.
	Changes of glucose levels precede dementia in African Americans with diabetes but not in Caucasians Hugh C. Hendrie, DSc ^{a,b,c,*} , Mengjie Zheng, MS ^d , Kathleen A. Lane, MS ^d , Roberta Ambuehl, MS ^b , Christianna Purnell, BA ^a , Shanshan Li, PhD ^d , Frederick W. Unverzagt, PhD ^c , Michael D. Murray, PharmD ^{b,e} , Ashok Balasubramanyam, MD ^f , Chris M. Callahan, MD ^{a,b,g} , and Sujuan Gao, PhD ^d
<u>J Gen Intern Med.</u> 2018 Apr; 33(4): 455–462. Published online 2018 Jan 12. doi: <u>10.1007/s11606-017-4</u> ;	PMCID: PMC5880772 281-x PMID: 29330643
Antihypertensive Medication and Dement with Hypertension: A Prospective Cohort <u>Michael D. Murray</u> , PharmD, MPH, ^{M1,2} <u>Hugh C. Hendrie</u> , D Roberta Ambuehl MS ¹ Shanshan Li, PhD ⁵ Erederick W	tia Risk in Older Adult African Americans Study OSc, ^{1,3,4} <u>Kathleen A. Lane</u> , MS, ⁵ <u>Mengjie Zheng</u> , MS, ⁵
Sujuan Gao, PhD ⁵	INDIANA UNIVERSITY SCHOOL OF MEDICINE

Ψ

Integrating EHR data at the Indiana ADRC

- Utilizing EHR data for IADRC participants
 - Medical history, labs and medications for consensus diagnoses (web-based data access)
 - Data analyses for various research projects
- Risk factors for dementia in ICU survivors using EHR data
- Pilot site of NACC's COVID supplement

Statistical Challenges in Analyzing EHR Data

- Cohort and variable definition
 - Understanding EHR data structure
- Accurate patient identification
 - Collecting Medical Record Numbers (MRNs)
 - Handling data from multiple healthcare systems
 - Patient matching in cases without MRNs
- Data quality
 - Need for extensive data QC
- Completeness
 - Establishing an observation window for each individual
 - Establish censoring points for non-events

Statistical Challenges in Analyzing EHR Data

- Varying time intervals for longitudinal data
 - Proper alignment of time for longitudinal models
 - Assessing the robustness of findings to the number of measurements
- Selection bias
 - Healthy individuals may have fewer EHR encounters
- Confounding bias
 - Conducting a careful examination of all model variables
 - Reducing reliance on automated model selection procedure
- Causal inference
 - Inverse-probability weighting: Modeling the probability of exposure/treatment
 - Standardization: Modeling conditional mean outcomes based on confounders

scientific reports

OPEN A comparison of machine learnin methods for survival analysis of high-dimensional clinical data for dementia prediction

Annette Spooner¹⁵³, Emily Chen¹, Arcot Sowmya¹, Perminder Sachdev^{2,3}, Nicole A. Julian Trollor^{2,3,4} & Henry Brodaty^{2,3}

🖲 Che

Figure 1. Heatmap illustrating the performance of each of the machine learning algorithms with each feature selection method on the MAS dataset, measured by the mean concordance index.

Ψ

JAMA Cardiology | Original Investigation Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction

Rohan Khera, MD, MS; Julian Halmovich, MD; Nathan C. Hurley, BS; Robert McNamara, MD; John A. Spertus, MD, MPH; Nihar Desai, MD, MPH; John S. Rumsfeld, MD, PhD; Frederick A. Masoudi, MD, MSPH; Chenxi Huang, PhD; Sharon-Lise Normand, PhD; Bobak J. Mortazavi, PhD; Harlan M. Krumholz, MD, SM

Table 2. Performance Characteristics of Models for Predicting In-Hospital Mortality in Acute Myocardial Infarction

Characteristic	Logistic regression	LASSO	Neural network	XGBoost	Meta-classifier	
Variables included in the model of McNamara et al ²¹						
Model performance metrics						
AUROC	0.878	0.874	0.874	0.886	0.886	
(95% CI)	(0.875-0.881)	(0.870-0.879)	(0.870-0.878)	(0.882-0.890)	(0.882-0.890)	
Precision-recall AUC	0.372	0.367	0.371	0.395	0.398	
F score	0.415	0.408	0.411	0.432	0.432	
Sensitivity	0.42	0.43	0.41	0.44	0.43	
	(0.41-0.43)	(0.42-0.45)	(0.40-0.42)	(0.43-0.45)	(0.42-0.44)	
Specificity	0.97	0.97	0.97	0.97	0.98	
	(0.97-0.97)	(0.97-0.97)	(0.97-0.97)	(0.97-0.97)	(0.97-0.98)	
PPV	0.41	0.38	0.41	0.42	0.44	
	(0.40-0.42)	(0.37-0.39)	(0.40-0.42)	(0.41-0.43)	(0.43-0.45)	
NPV	0.97	0.97	0.97	0.98	0.97	
	(0.97-0.97)	(0.97-0.98)	(0.97-0.97)	(0.97-0.98)	(0.97-0.98)	

Summary

- 1. EHR data offers valuable, longitudinal medical information that can be challenging to obtain in research projects limited by funding and time.
- 2. The integration of EHR data and ADRD focused research data presents a unique opportunity to explore mid-life medical conditions many years before the onset of AD.
- 3. Critical considerations in EHR data analysis:
 - Ensuring data accuracy
 - Utilizing appropriate analytic methods for missing data and time-varying exposures
 - Employing advanced statistical methods to mitigate potential biases

Performing sensitivity analyses to ensure robustness of findings