

NIAGADS Update: Fall 2023

Li-San Wang, PhD University of Pennsylvania

COI: Nothing to Disclose

NIAGADS NIAGADS At a Glance

Data Sharing

102 datasets
>183,000 samples
492 Unique Requests
221 Institutional Certifications

Userbase

>250 articles cite U24

>3,515 verified users

ADSP

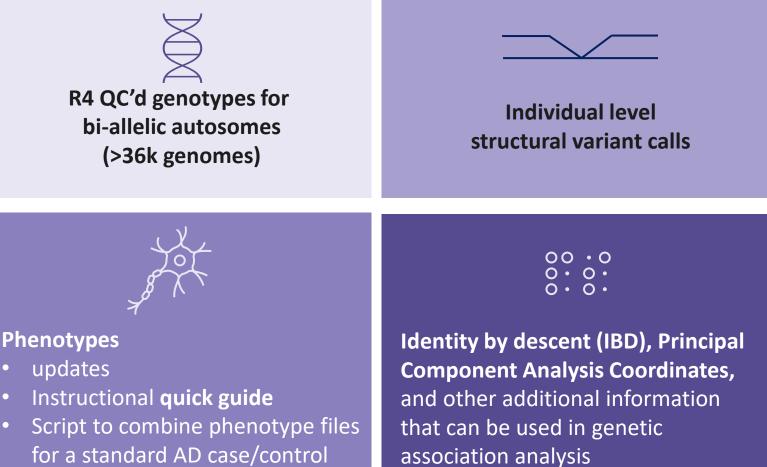
70 cohorts26 current grant subawards

Exomes 20,503

Genomes

~350% increase from 2021 to 2024

(16,905 in 2021 to ~60,000 genomes in 2024)


ADSP Support

ADSP August 2023 R4 WGS QC Release

Released August 2023

analysis

association analysis

Planned ADSP R4 WGS Releases

Coming Soon

November 2023

R4 WGS Annotation

PHC 2023 Release

Early 2024

SV joint genotype called pVCF

QC'd chrX/multi-allelic pVCF

ADSP-PHC 2023 Deliverables

Included in ng00067.v11

Harmonization in Progress; to be included in future release Domain data not available for harmonization

Cohorts	Autopsy	Cardiovascular Risk Factors	Cognition	Fluid Biomarkers	Imaging – DTI	Imaging – FLAIR	Imaging – PET	Imaging – T1
A4	N/A		\checkmark	N/A	N/A	\checkmark	\sim	
ACT	\sim		\checkmark	N/A			N/A	
ADNI	N/A	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\sim
ADFBS (NIA-LOAD)	\checkmark	\checkmark	\checkmark	N/A	N/A	N/A	N/A	N/A
EFIGA		\sim	\sim	N/A	N/A	N/A	N/A	N/A
Knight ADRC			\sim	\sim				
NACC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\sim	\checkmark
ROS/MAP/MARS	\checkmark	\checkmark	\checkmark	N/A	\checkmark		N/A	
WHICAP			\sim	N/A		\sim		\sim
UPenn				\sim				
WHICAP		\sim	\checkmark			\checkmark	N/A	
WRAP	N/A	\checkmark	\sim		\sim		\checkmark	\sim

NIAGADS ADSP-PHC 2023 Deliverables ng00067.v11

Cognition	Fluid Biomarker	Neuropathology	Vascular Risk Factors
•Harmonized composite scores (PHC_EF, PHC_MEM, PHC_LAN, PHC_VSP)	 Amyloid ß,Tau, pTau Z-scores A/T classification Raw data Platform Information 	 Mapped AD Phenotypes (NIA-AA ABC score, Thal phasing, Braak staging, CERAD score) Cerebral amyloid angiopathy, lewy bodies, vascular brain injury, TDP- 43 proteinopathy and hippocampal sclerosis 	•Vascular Composite (Hypertension, diabetes, heart disease [myocardial infarct, congestive heart failure, etc.], BMI, height, weight, stroke, smoking, medication, blood pressure, CVR score)

Imaging – DTI	Imaging – FLAIR	Imaging – MRI	Imaging – PET
 PreQual Processed Data (Image-Based BIDS) Free Water Corrected Metrics Scanner Harmonization Multi-Site Calibration FA and MD Scalars 	•Total WMH Volume	 Preprocessed Imaging Collection MUSE Regions of Interest FreeSurfer Regions of Interest SPARE-AD Scores AD Signature (Schwartz) 	 Preprocessed Imaging Collection Global SUVRs Centilloid Values GMM Probabilities Amyloid Status

Courtesy Tim Hohman / Vanderbilt: timothy.j.hohman@vumc.org

ADSP R5 WGS Release

Coming in Q1 2024

ADSP Release	Primary Ancestry/Ethnicity	Cases	Controls	Other	Totals
	Black/African American	2,926	6,754	777	10,457
	Asian	1,273	4,083	5	5,422
GCAD	Latino/Hispanic	4,065	9,407	2,832	19,320
Release 5	Non-Hispanic White	9,124	14,459	6,067	31,663
	Total	17,108	33,557	9,662	60,327

ADRCs can get WGS/WES data from their own samples from us! Send an email to <u>niagads@pennmedicine.upenn.edu</u> to initiate.

ADRC samples in next batch release

- **4,590 exomes** (**22%** of total ADSP WES)
- 12,629 genomes (20% of total ADSP WGS)

ADRC GWAS Data Release

ADC1–7

- NHW available on NIAGADS currently
- Moving over to DSS

ADC1-15

Being prepared to release on NIAGADS DSS:

- QC'd GWAS, Covariate files, and TOPMed Imputation for all populations
- Standardizing Subject IDs across all file types
- Updating GWAS PLINK files to forward strand, on GRCh38

Anticipate end of 2023 release.

ADC16

~1,600 samples selected for genotyping. Plating at NCRAD.

Totaling GWAS SNP Array Data for 29,676 ADRC Samples Passing QC and available for request.

Supporting Data Use **User Support**

NIAGADS is always looking to improve user experience. Over the next year we are planning to introduce several new resources:

Awareness

Expanding NIAGADS reach through increase investigator awareness will be accomplished through informational outreach sessions at AAIC, ASHG, and Neuroscience 2023 in 2023

Exhibit Hall Booth

Poster Presentations

ADSP Session at AAIC

NIAGADS Knowledgebases – Web and API

- FILER¹: <u>https://tf.lisanwanglab.org/FILER/</u>
 - 75,207 standardized functional genomics tracks
- ADVP²: <u>https://advp.niagads.org</u>
 - curated AD-GWAS catalog, documenting >18k published associations
- GenomicsDB³: https://www.niagads.org/genomics
 - GWAS summary statistics
 - >260M annotated ADSP Variants (17K R3)
 - detailed gene and variant reports
 - mine datasets and annotations in real-time _
 - compare GWAS summary stats to FILER functional genomics tracks and ADSP variant annotations using the <u>NIAGADS IGV</u> <u>Genome Browser</u>
- 1. Kuksa et al. 2022, NAR Genomics and Bioinformatics, 4(1): lqab123
- 2. Kuksa et al. 2021, Journal of Alzheimer's Disease, 86(1): 461-477
- 3. Greenfest-Allen et al, in press. Alzheimer's & Dementia

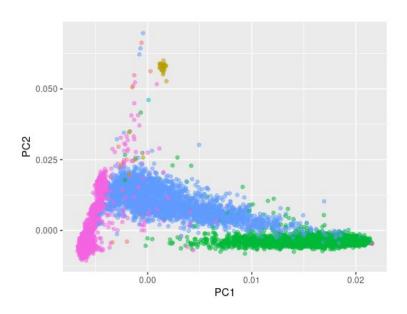
Explore these on the web

or leverage the new (alpha) <u>NIAGADS API</u> at <u>https://api.niagads.org</u>

to programmatically access these knowledgebases and incorporate annotations and data tracks in analysis pipelines.

	Active filters: p-value: 5e-8									
onsequence	Chromosome	Position	Variant	p-value ↑	refSNP	ADSP Variant?	Consequence	Impact 😨	Impacted Gene 🕜	Is Coding?
synonymous v	chr19	44908684	19:44908684:T:C	1.17e-881	rs429358	×	missense variant	MODERATE	APOE	~
upstream gene non coding tra	chr19	44906745	19:44906745:G:A	7.52e-715	rs769449	~	intron variant	MODIFIER	APOE	
3/7 ▼	chr19	44912456	19:44912456:G:A	1.74e-697	rs10414043	~	non coding transcript exon variant	MODIFIER	AC011481.3	
ADSP Variant? • Yes • No	chr19	44912678	19:44912678:G:T	7.52e-697	rs7256200		non coding transcript exon variant	MODIFIER	AC011481.3	
	chr19	44916825	19:44916825:A:C	7.04e-643	rs73052335		intron variant	MODIFIER	AP0C1	
	chr19	44892887	19:44892887:C:T	6.15e-575	rs11556505	×	synonymous variant	LOW	TOMM40	~
	chr19	44892652	19:44892652:C:G	3.34e-574	rs34404554	×	intron variant	MODIFIER	TOMM40	
Chromosome	chr19	44892362	19:44892362:A:G	6.64e-573	rs2075650	×	intron variant	MODIFIER	TOMM40	
 chr19 chr2 	chr19	44891079	19:44891079:T:C	2.25e-573	rs71352238	~	upstream gene variant	MODIFIER	TOMM40	
chr8 ▲ 1/5 ▼	chr19	44884339	19:44884339:G:A	9.33e-569	rs12972970	~	intron variant // non coding transcript variant	MODIFIER	AC011481.2	

The NIAGADS Genome Browser

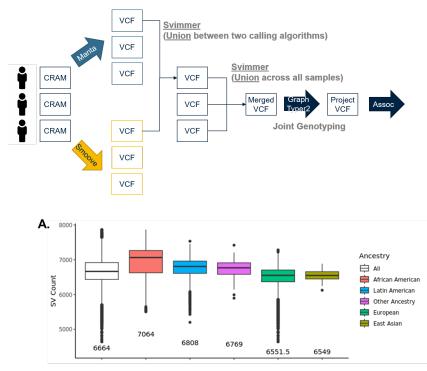


https://www.niagads.org/genomics/app/visualizations/browser

SNV and INDEL Analysis of ADSP Data

- Common variants and aggregates of rare coding/noncoding variants in 13,371 individuals with WGS data
 - AD cases: 64.9% NHW, 15.7% Hispanics, and 17.4% AA
 - Controls: 45.4% NHW, 29.0% Hispanics, and 24.9% AA
- Significant findings
 - Common variants (MAF>0.5%) in or near APOE, BIN1, LINCO0320 and 14q24 (p < 5x10⁻⁸)
 - Suggestive associations (p < 5x10-5) of rare coding variants in ABCA7 and rare noncoding variants in the promoter of TOMM40 distinct of APOE

WP Lee et al., Association of Common and Rare Variants with Alzheimer's Disease in over 13,000 Diverse Individuals with Whole-Genome Sequencing from the Alzheimer's Disease Sequencing Project doi.org/10.1101/2023.09.01.23294953, https://www.medrxiv.org/content/10.1101/2023.09.01.23294953v1



- American Indian/Alaska Native
- Asian
- Black or African American
- Native Hawaiian or Other Pacific Islander
- Other
- White
- NA

Structural Variant Analysis of ADSP Data

- Novel pipeline for calling SVs in WGS data
- Ultra-rare protein-altering SVs within AD-related genes, ABCA7, APP, PLCG2, and SORL1
- APP duplications in three early-onset AD cases
- Linkages between SVs and known AD risk-associated SNPs
- Reported 16 SVs linked to AD and 13 SVs associated with ADrelated pathological endophenotypes
- Uncovering an over-representation of SVs within pathways related to neuronal function

H Wang et al., Structural Variation Detection and Association Analysis of Whole-Genome-Sequence Data from 16,905 Alzheimer's Diseases Sequencing Project Subjects https://doi.org/10.1101/2023.09.13.23295505 https://www.medrxiv.org/content/10.1101/2023.09.01.23294953v1

