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MRI Data Are Susceptible to Scanner Effects



Inter-Scanner MRI Biases

• While the data we work with are processed to produce quantitative measurements, they are 
dependent on acquisition equipment and processing pipeline.

• In particular, inter-scanner differences are known to be quite large, even in simple 
volumetric studies – this has been attributed to differences across scanner manufacturers 
as well as imaging protocols.

4

(See also Badhwar et al., 2020; Byrge et al., 
2022; Cai et al., 2021; Han et al., 2006; 
Shinohara et al., 2017; Takao et al., 2014, 
2011, and many more) 



Large-Scale Imaging often Requires Collaboration
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Multi-Center Imaging Networks
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Harmonization of Multi-Site MRI Data
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Overview of Harmonization Methods



How has our field been doing this?
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• Regression adjustment
• Simply include a dummy variable for scanner in subsequent analyses to address mean shifts.

• Other calibration techniques that include scaling
• Example:

• But these methods don’t consider a key factor: 

we make multiple measurements when we assess the brain



MRI Harmonization Is of Increasing Interest
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Deep Learning 
Harmonization 
Methodology

12Hu et al. (NeuroImage, 2023)

(Not exhaustive)
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A Brief Introduction to ComBat



Site 1

Site 2

n=105

n=105

Matched for 
age and sex

- Siemens TIM Trio 
- Field: 3T
- 64 gradient directions

- Siemens Verio
- Field: 3T
- 30 gradient directions

 Healthy

 Adolescents (8 to 18 

years)

 22 females vs 83 males 

Subjects
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Harmonization of Multi-Site DTI data

Fortin, Parker, Tunc et al. (2017)



Site Effects in the White Matter
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Fractional Anisotropy (FA) Mean Diffusivity (MD)



Statistical Approaches to Batch Effect Correction
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ComBat: Location/scale model + empirical Bayes

20Johnson, Li, Rabinovic (2007)



Data model:

Prior distribution for additive effects Prior distribution for scaling effects

Empirical Bayesian Framework
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Posterior Means
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Solved
iteratively 



MA plots (Bland-Altman plots) in the WM for FA 



MA plots (Bland-Altman plots) in the WM for MD 
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ComBat for Cortical Thickness

27Fortin, Cullen, Sheline et al. (2018)
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ComBat-Based 
Harmonization 
Methodology

29Hu et al. (NeuroImage, 2023)

(Not exhaustive)



A Few Examples of Extensions



Longitudinal Study Designs
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Beer, Tustison, Cook et al. (NeuroImage, 2020)



ComBat for Resting-State fMRI

32Yu, Linn, Cook et al. (2021) Chen, Beer, Tustison et al. (2022)



Nonlinear Feature Harmonization methods

35
Hu et al., Under Review (2023+)



Future Directions



Key Areas for Continued Development

- More flexible models, as statistical and deep learning models continue to evolve.

- Approaches for harmonization in the context of new analysis settings.

- Further leveraging traveling subject study designs.

- Next generation image-domain harmonization methods 
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Thank You!
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