Multimodal deep learning for dementia assessment

Vijaya B. Kolachalama, PhD, FAHA

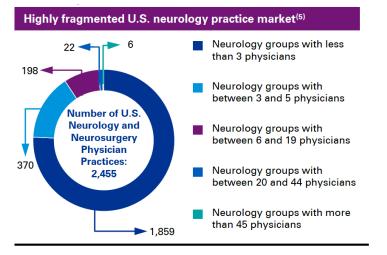
Associate Professor, Department of Medicine, Boston University School of Medicine Department of Computer Science, Boston University Founding Member, Faculty of Computing & Data Sciences, Boston University Web: <u>https://vkola-lab.github.io;</u> Twitter: @vkola_lab

Disclosures

National Heart, Lung, and Blood Institute

Johnson Johnson

National Institute of Diabetes and Digestive and Kidney Diseases

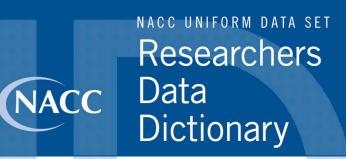

Multidisciplinary team

- Trainees in our lab
 - Chonghua Xue, Michael Romano, Shangran Qiu, Prajakta Joshi, Xiao Zhou, Lingyi Xu, Matthew Miller, Cody Karjadi, Joyce Lee, Akshara Balachandra, Diala Lteif, Yi Zheng, Varuna Jasodanand, Lindsey Claus, Yichi Zhang, Olivia Zhou, Rushin Gindra, Shreyas Puducheri, Anika Walia, Meagan Lauber, Meysam Ahangaran, Sahana Kowshik, Piyush Kathuria, Osman Berke
 - PhD students and postdocs in computer science
 - MD students, residents and clinical fellows
 - Trainees with background in neuroscience
 - Background in more than a single discipline

Assistive tools for neurology practice

- <u>Problem</u>: Supply of US neurologists may have grown by 11% between 2013 and 2025, demand will have grown by 16%.
 - A. Burton, Lancet Neurology, 17(6), P502-503, 2018

- <u>Solution</u>: Develop AI approaches using routinely collected clinical data that can serve as screening tools for dementia.
 - Leverage multimodal data in <u>native</u> formats.
 - Clinical and demographic data, patient history, bedside cognitive tests, neuropsychological tests, neuroimaging
 - Focus on comprehensive evaluation
 - Computational validation
 - Expert-level comparison
 - Post-mortem evidence



Access to real-world data

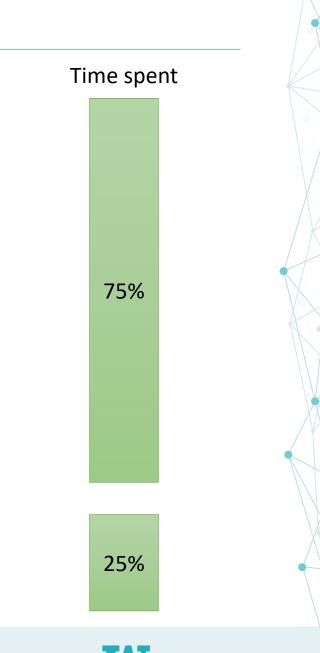
NACC

the NIA ALZHEIMER'S DISEASE RESEARCH CENTERS PROGRAM National Alzheimer's Coordinating Center

Total n = 4822

Version 3.0, March 2015

NACC								
NC [n=2524]	69.82± 9.93^	871 (34.51%)	15.92±2.95^	(2120, 303, 55, 31, 2, 0)^	599 (29.95%)^	28.98± 1.31^	0.06± 0.16^	26.80± 2.44^
MCI [n=1175]	74.01± 8.74^	555 (47.23%)	15.36±3.35^	(965, 160, 25, 17, 1, 0)^	322 (38.66%)^	26.79± 2.51^	0.46± 0.18^	22.68± 3.41^
AD [<i>n</i> =948]	74.97± 9.13^	431 (45.46%)	14.64±3.64^	(816, 85, 23, 11, 0, 0)^	346 (52.19%)^	20.48± 5.69^	1.02± 0.60^	15.39± 5.44^
nADD [<i>n</i> =175]	69.35± 10.84^	110 (62.86%)	14.86±3.60^	(161, 10, 2, 1, 0, 0)^	34 (25.95%)^	22.23± 6.14^	1.07± 0.70^	17.53± 6.35^
p value	1.145e- 56	1.130e-22	1.846e-25	5.349e-2	8.026e-49	<1.0e-200	<1.0e- 200	<1.0e-200

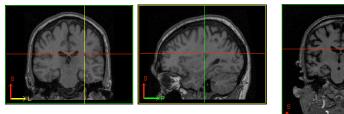


Modeling pipeline

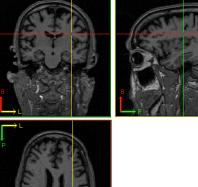
- Data collection
- Data processing/normalization/harmonization
- Image processing
 - Registration
 - Normalization
 - Segmentation
 - ROI selection and removal of unwanted regions

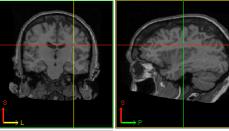
DEEP LEARNING APPROACHES

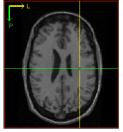
- Bias correction (For multimodal imaging)
- Image quality check



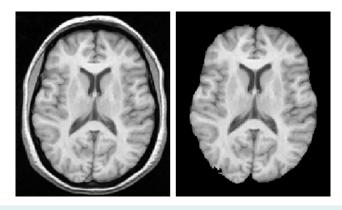
SITY of WASHINGTON

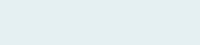

Developing an image processing pipeline


Volumetric registration



a) Source Image (256x256x198)





c) Registered Image (S2T) b) Target Image (180x256x256)

Skull stripping

Our recent work

Volume 143, Issue 6 June 2020

Article Contents

Abstract

JOURNAL ARTICLE Development and validation of an interpretable deep learning framework for Alzheimer's disease classification 3

Shangran Qiu, Prajakta S Joshi, Matthew I Miller, Chonghua Xue, Xiao Zhou, Cody Karjadi, Gary H Chang, Anant S Joshi, Brigid Dwyer, Shuhan Zhu, Michelle Kaku, Yan Zhou, Yazan J Alderazi, Arun Swaminathan, Sachin Kedar, Marie-Helene Saint-Hilaire, Sanford H Auerbach, Jing Yuan, E Alton Sartor, Rhoda Au, Vijaya B Kolachalama 🕿 Author Notes

Brain, Volume 143, Issue 6, June 2020, Pages 1920–1933,

Interpretable machine learning

nature communications

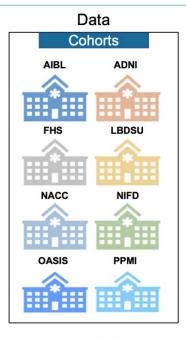
Explore content v About the journal v Publish with us v

<u>nature</u> > <u>nature communications</u> > <u>articles</u> > article

Learning from multiple forms of data

Article | Open Access | Published: 20 June 2022

Multimodal deep learning for Alzheimer's disease dementia assessment


Shangran Qiu, Matthew I. Miller, Prajakta S. Joshi, Joyce C. Lee, Chonghua Xue, Yunruo Ni, Yuwei Wang, Ileana De Anda-Duran, Phillip H. Hwang, Justin A. Cramer, Brigid C. Dwyer, Honglin Hao, Michelle C. Kaku, Sachin Kedar, Peter H. Lee, Asim Z. Mian, Daniel L. Murman, Sarah O'Shea, Aaron B. Paul, Marie-Helene Saint-Hilaire, E. Alton Sartor, Aneeta R. Saxena, Ludy C. Shih, Juan E. Small, <u>Vijaya B. Kolachalama</u> + Show authors

Nature Communications 13, Article number: 3404 (2022) | Cite this article

Study population

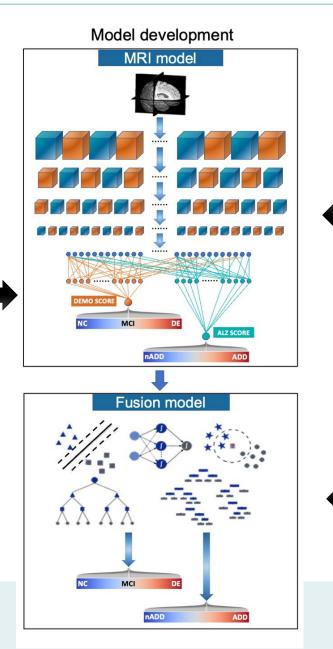
Featu	ures
Demographics	Functional Assessment
Gender Age	FAQ Bill
Race	FAQ Shop FAQ Game
Animals	His. Smoke
MMSE Logical M.	His. Alcoh.
Boston N. Digital S.	His. Depre. His. TBI
Neuropsych Tests	His. Diabe. Med History

Multimodal	data
------------	------

- 1) Demographics
- 2) Patient history
- 3) Functional assessments
- 4) Neuropsychological testing
- 5) MRI scans

• 4550 with normal cognition

- 2412 participants with mild cognitive impairment
- 1606 participants with Alzheimer's disease dementia
- 348 participants with dementia due to other causes


Dataset (group) [subjects]	Age mean ± std
ADNI	
NC [<i>n</i> = 481] MCI [<i>n</i> = 971] AD [<i>n</i> = 369]	74.26 ± 6.00 72.84 ± 7.71 74.91 ± 7.84
<i>p</i> value	2.565e-6
NACC NC [<i>n</i> = 2524] MCI [<i>n</i> = 1175] AD [<i>n</i> = 948] nADD [<i>n</i> = 175] <i>p</i> value NIFD	69.82 ± 9.93 [^] 74.01 ± 8.74 [^] 74.97 ± 9.13 [^] 69.35 ± 10.84 [^] 1.145e-56
NFD NC $[n = 124]$ nADD $[n = 129]$ p value PPMI	63.21 ± 7.27 63.66 ± 7.33 6.266e-1
NC [<i>n</i> = 171] MCI [<i>n</i> = 27] <i>p</i> value	62.74 ± 10.12 68.04 ± 7.32 1.006e-2
AIBL NC [n = 480] MCI [n = 102] AD [n = 79] p value OASIS	72.45 ± 6.22 74.73 ± 7.11 73.34 ± 7.77 5.521e-3
NC $[n = 424]$ MCI $[n = 27]$ AD $[n = 193]$ nADD $[n = 22]$ <i>p</i> value	71.34 ± 9.43 75.04 ± 7.25 76.01 ± 8.01 72.64 ± 8.77 5.896e-8
FHS NC [<i>n</i> = 212] MCI [<i>n</i> = 75] AD [<i>n</i> = 17] nADD [<i>n</i> = 9] <i>p</i> value	73.37 ± 9.63 76.23 ± 6.83 78.82 ± 7.20 79.44 ± 4.17 4.755e-3
LBDSU NC [n = 134] MCI [n = 35] nADD [n = 13] p value	68.77 ± 7.62 70.16 ± 8.41 73.42 ± 7.81 1.033e-1

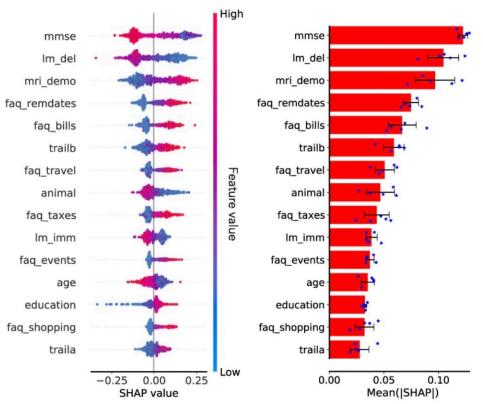
UNIVERSITY of WASHINGTON

Multimodal deep learning

Multimodal data

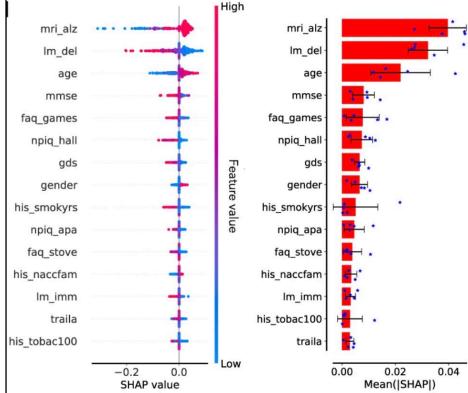
- 1) Demographics
- 2) Patient history
- 3) Functional assessments
- 4) Neuropsychological testing
- 5) MRI scans

Convolutional neural network


Hierarchical learning strategy that processes voxel-level information

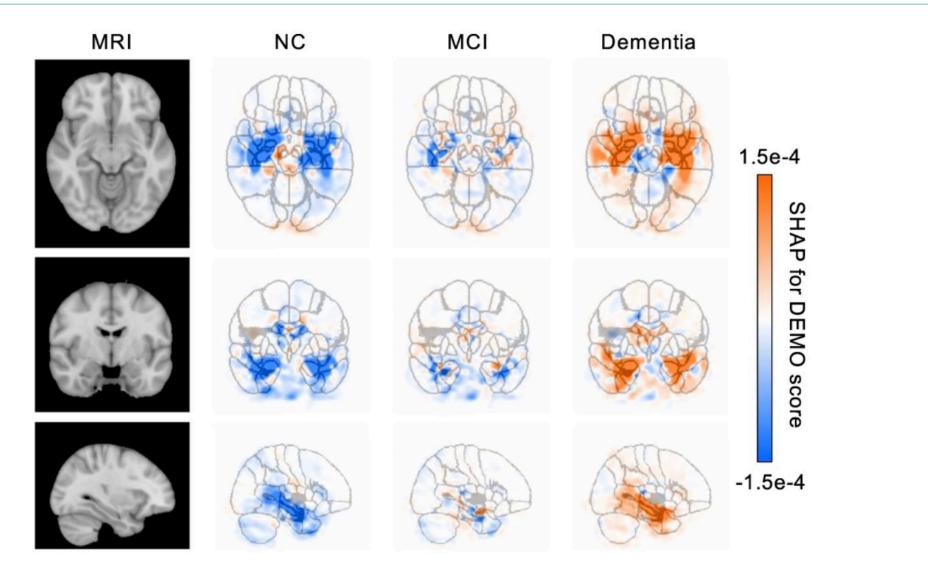
Multilayer perceptron

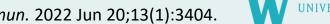
A framework for combining vectorized (imaging and nonimaging) features



Important factors contributing to prediction

NC vs MCI vs Dementia


AD vs non-AD Dementia

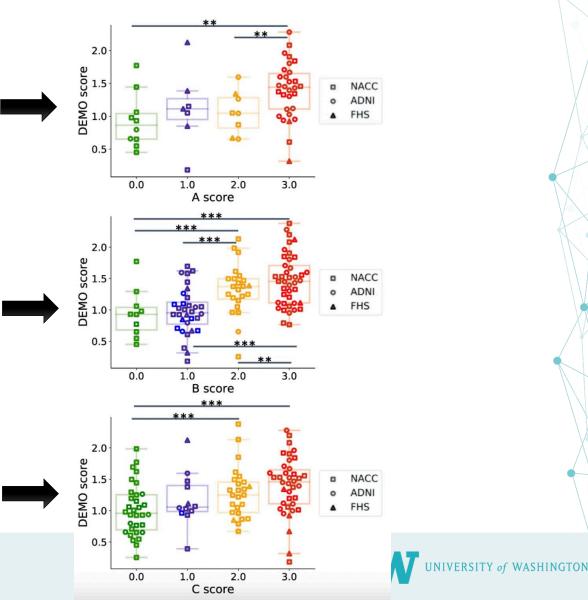


Qiu et. al., Nat Commun. 2022 Jun 20;13(1):3404. UNIVERSITY of WASHINGTON

Model interpretability

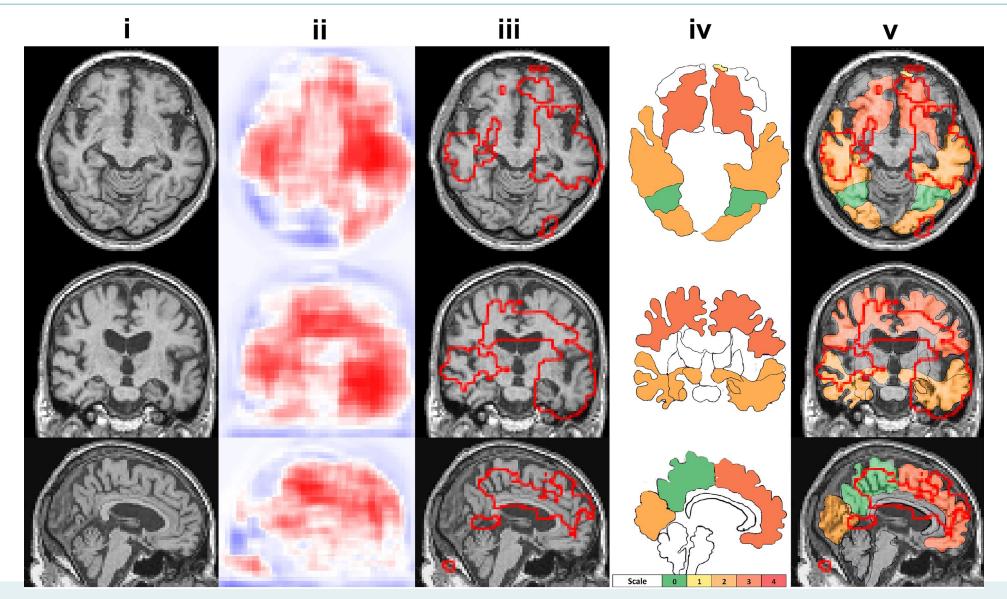
UNIVERSITY of WASHINGTON

Qiu et. al., Nat Commun. 2022 Jun 20;13(1):3404.


Neuropathologic validation

NACC (*n* = 74), ADNI (*n* = 25) and FHS (*n* = 11)

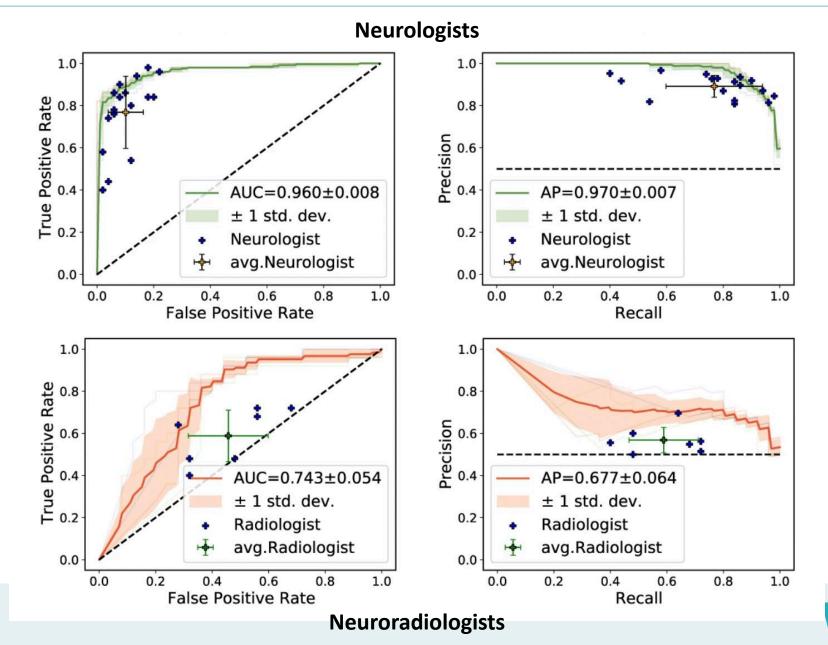
Thal phase for A β (A score F-test: F(3, 51) = 3.665, p = 1.813e-2)


Braak & Braak for neurofibrillary tangles (NFTs) (B score F-test: F(3, 102) = 11.528, p = 1.432e-6)

CERAD neuritic plaque scores (C score F-test: F(3, 103) = 4.924, p = 3.088e-3) *p* < 0.05 as *; *p* < 0.001 as **, and *p* < 0.0001 as ***

Qiu et. al., Nat Commun. 2022 Jun 20;13(1):3404.

Neuropathologic validation


UNIVERSITY of WASHINGTON

Qiu et. al., Brain, 143(6), 2020, 1920-33.

NACC

Expert-level validation

NACC

UNIVERSITY of WASHINGTON

Summary

- We have developed and validated a deep learning framework that processes <u>routinely collected</u> clinical data to perform dementia assessment – the goal is to assist practitioners in neurology clinics
 - The NACC cohort has allowed us to achieve this goal
- We are currently developing a web-based software that can provide real-time assistance
 - Please reach out if you are interested to test the tool (vkola@bu.edu)
- Partnering with multiple clinical centers around the globe:
 - Boston Medical Center, Mass General, Brigham & Women's, Lahey Clinic, Stanford, Emory, Beijing, and Nebraska

Thank you!