

NIAGADS Update for the ADRC Data Core Meeting Engaging ADRC Researchers and Understanding Genetic Data Analysis Needs

Li-San Wang, PhD University of Pennsylvania

COI: Nothing to Disclose

RECAP: ADSP 2024 Releases

Released in 2024

Additional files added for R2, R3, and R4 releases

October

Structural Variant joint genotype calls, multi-allelic / chrX quality control results

Coming Soon in 2024

R5 Whole Genome Sequencing for ~24K new samples**November**Individual sample raw data (CRAMs)Joint genotype calls preview pVCF across all ~60k genomes released by ADSP

December

Additional cohorts from the **Phenotype Harmonization Consortium** (PHC) released

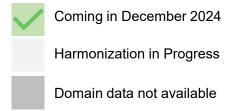
RECAP: Next ADSP Data Release (Pending Nov 2024) ADSP R5 – Up to 60K Whole Genomes

ADSP Release	Primary Ancestry/Ethnicity	Cases	Controls	Other	Totals
GCAD Release 5	Black/African American	2,646	5,608	777	9,031
	Asian	1,273	4,083	5	5,361
	Latino/Hispanic	4,488	10,248	2,777	17,513
	Non-Hispanic White	9,124	14,459	6,067	29,650
	Total	17,531	34,398	9,626	61,555

ADRC samples in R5

12,629

genomes 20% of total ADSP WGS


4,590

Exomes (previously released) 22% of total ADSP WES

ADRCs can get WGS/WES data from their own samples from us! Send an email to niagads@pennmedicine.upenn.edu to initiate.

RECAP: Next ADSP Data Release (Pending Dec 2024) Additional Clinical Data from the Phenotype Harmonization Consortium (PHC)

Cohorts	Cognition	Fluid Biomarkers	Neuro- pathology	Vascular Risk Factors	Imaging - DTI	Imaging - FLAIR	Imaging - T1	Imaging - PET
ADNI			N/A					
WHICAP		NA						N/A
EFIGA		NA			NDA	NR	NA	N/A
NIA-AD FBS		NA			NDA	NR	NA	NA
WRAP			N/A			NR		
ROS/MAP/MARS		NA						N/A
ACT		NA			NPA	NR	NA	NA
NACC								
WashU (Knight ADRC)								
A4		NA	NiA					
KBASE								
TARCC		NA	N/A					
HABS-HD		NA	N/A					
Miami Brain Bank	N/A	NA		NA	NDA	NA	NA	N/A
HIHG Brain Bank	N/A	NA		NA	NPA	NA	N/A	N/A
Case Western	N/A.	NA		NPA.	NPA	NA	N/A	N/A

RECAP: ADGC GWAS Data Release

Leads: Adam Naj & Amanda Kuzma

Batch 1:	Batch 2:	Batch 3:	Batch 4:
 ADRC array datasets (15 datasets) PHC assigned phenotypes ADSP ID mapping 	 GWAS datasets overlapping with PHC harmonized phenotypes (8 datasets) 	 Other GWAS datasets already deposited into NIAGADS (8 datasets) 	 Other GWAS datasets not yet shared through NIAGADS (many)
COMPLETE	IN PROGRESS		

Release Features

- All subject IDs standardized using updated schema
- PLINK files converted to forward strand and lifted to GRCh38
- Covariate files updated with consistent variables/formatting
- Standardized file naming schema

Challenges in Preparing Genetics Data for Researchers

Lessons learned from supporting the ADSP Artificial Intelligence and Machine Learning Consortium (AI-ML)

Analysis of imaging and genomic data

- Paul Thompson, Ultrascale Machine Learning to Empower Discovery in Alzheimer's Disease Biobanks (AI4AD)
- Degui Zhi, Genetics of Deep-Learning-Derived Neuroimaging Endophenotypes for Alzheimer's Disease

Analysis of gene expression data

- Towfigue Raj, Learning the Regulatory Code of Alzheimer's Disease Genomes
- Feixiong Cheng, Alzheimer's MultiOme Data Repurposing: Artificial Intelligence, Network Medicine, Therapeutics Discovery
- Wei Pan, Causal and integrative deep learning for Alzheimer's disease genetics
- Zhongming Zhao, AIM-AI: an Actionable, Integrated and Multiscale genetic map of Alzheimer's disease via deep learning

Developing and applying machine learning tools/platforms for AD research

- Olivier Lichtarge, Cognitive Computing of Alzheimer's Disease Genes and Risk
- Honghuang Lin, Assessing Alzheimer Disease Risk and Heterogeneity Using Multimodal Machine Learning Approaches
- Jason Moore, Artificial Intelligence Strategies for Alzheimer's Disease Research

https://adsp.niagads.org/funded-programs/artificial-intelligence-and-machine-learning/

Issues	Strategy
Data not properly integrated	 Ensure all data are harmonized for interoperability. E.g.
Lack of interoperability	annotations/WGS calls are processed for the same genome build

Issues	Strategy
Data not properly integrated Lack of interoperability	 Ensure all data are harmonized for interoperability. E.g. annotations/WGS calls are processed for the same genome build
Data not formatted for AI/ML algorithms File format inoperable	Use community / industry standard file formatDetailed documentation

Issues	Strategy		
Data not properly integrated Lack of interoperability	 Ensure all data are harmonized for interoperability. E.g. annotations/WGS calls are processed for the same genome build 		
Data not formatted for AI/ML algorithms File format inoperable	Use community / industry standard file formatDetailed documentation		
Data heterogeneity Different recruitment/DX criteria; different cognitive tests	 Document design of cohorts Go beyond just linking variables - harmonize clinical data by domain experts (e.g. PHC) Test robustness of harmonization extensively 		

Issues	Strategy			
Data not properly integrated Lack of interoperability	 Ensure all data are harmonized for interoperability. E.g. annotations/WGS calls are processed for the same genome build 			
Data not formatted for AI/ML algorithms File format inoperable	Use community / industry standard file formatDetailed documentation			
Data heterogeneity Different recruitment/DX criteria; different cognitive tests	 Document design of cohorts Go beyond just linking variables - harmonize clinical data by domain experts (e.g. PHC) Test robustness of harmonization extensively 			
Sample bias Case/control imbalance; age mismatch	 Create virtual cohort for AI/ML analysis based on cohort characteristics; work with domain (AD and epi) experts 			

Example: Defining FunGen Data Standards

Project lead: Fanny Leung / UPenn

Meta Data Schema Development

Define **meta-data** for describing various types of experimental data

Define ontologies/open vocabularies to be used for describing FunGen data attributes

Define minimal information for standardization across data sources:

genome build, annotation, ontologies, file formats, etc.

Standardized Fields for Summary Statistics

- ✓ Variant position: chr, start, end
- ✓ Allele information: ref, alt, a1, a2
- Feature name (e.g. gene name, protein name)
- ✓ P-value and/or Q-value
- Effect size (Beta and Beta SE) or Spearman correlation p-value
- Detailed sample source, molecular trait and organism; provide protocol details if iPSCs
- Description of all the columns
- Software name and version used to perform the analyses

Harmonized Genomic Knowledge via NIAGADS Open Access Data and Annotation Resources

unrestricted data and annotations (variant, gene, sequence) available for immediate access

filer¹

GenomicsDB³

direct data downloads for GWAS summary statistics (p-values) and ADSP Variant Annotations

https://dss.niagads.org

75,207

standardized, searchable functional genomics tracks

https://tf.lisanwanglab.org/FILER/

curated AD-GWAS catalog, documenting

>18k published associations

https://advp.niagads.org

AD-genetics knowledgebase and Genome Browser, containing

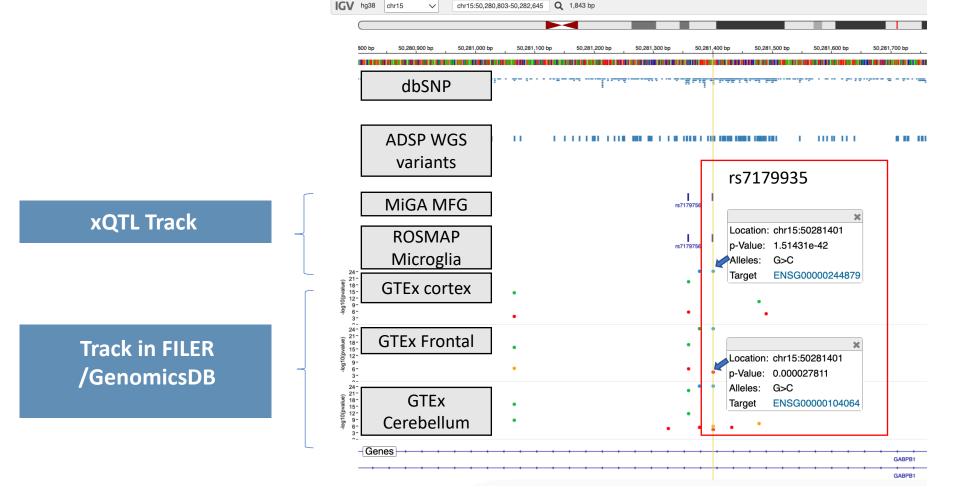
>260M

annotated variants

https://www.niagads.org/genomics

ASHG 2024 Platform Talk Pavel Kuksa

1. Kuksa et al. 2022, NAR Genomics and Bioinformatics, 4(1): lqab123. 2. Kuksa et al. 2021, Journal of Alzheimer's Disease, 86(1): 461-477. 3. Greenfest-Allen et al. 20204, Alzheimer's & Dementia, 20(2):1123-1136


Visualize and Explore Data

Lead: Emily Greenfest-Allen

GenomicsDB

Visualize Across Tracks

Features

- Track selector
- Any QTL datasets
- FILER/user's own input tracks

https://www.niagads.org/genomics/app

1. Kuksa et al. NAR Genom Bioinform 2022. 2. Greenfest-Allen et al. Alzheimers Dement 2024.

NIAGADS Open Access NIAGADS API*

Lead: Emily Greenfest-Allen

filer

Alzheimer's Disease Variant Portal

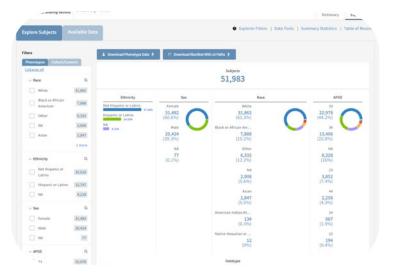
Open Access Portal

GenomicsDB

Alzheimer's Genomics Database

- Programmatic access
- Bulk, ranged, and genome wide queries
- Integration into analysis pipelines
- Better support ADSP activities and AI/ML pipelines

conforms to OpenAPI standards (& is FAIR)


Supporting FAIR Principles

Initiatives	Findable	Accessible	Interoperable	Reusable
Gen3 Platform	Q		\leftarrow	
RAS Authentication			\leftarrow	
Data Submission Portal	Q	A		
DOI Implementation	Q			
ADGC GWAS Standardization				
Outreach Initiatives	Q			
NIAGADS Knowledgebases (Alzheimer's Genomics Database, FILER, ADVP, VariXam)	Q	H	\longleftrightarrow	
NIAGADS Open Access	Q			

Supporting FAIR Principles

're-approval et preliminary details from submitter

ssign data intake manager for assessmer

stake data manger communicates approva

tatus over email and updates submission

tatus using the portal API

status

documented, workflow-driven forms

guiding users from study -> dataset ->

xperiment details

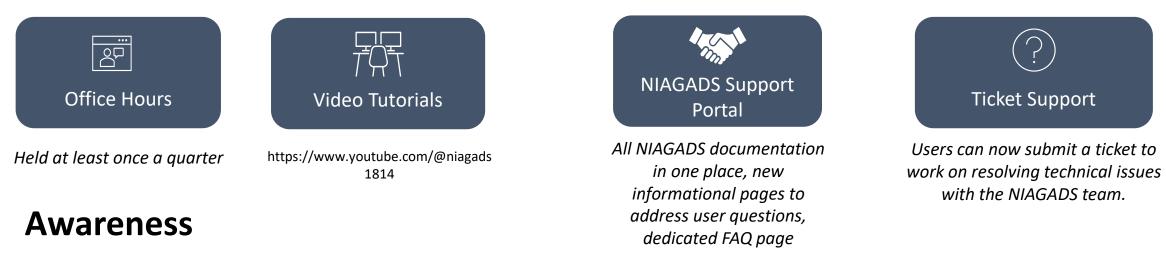
Upload & Validation user-dashboard to track submission templates provided for metadata files (e.g., subject phenotypes, file manifests)

metadata files and forms validate

automatically at submission

DataCite FIND, ACCESS, AND REUSE DATA

ADSP Data Discovery Platform Integration powered by Gen3 Technology


Streamline data submission and validation using **DSS Data Submission Portal**

Digital Object Identifiers (DOI) Enabled through NIH DataCite **Consortium** membership

Supporting Data Use

User Support

NIAGADS offers several support resources launched over the last year:

Expanding NIAGADS reach through increased investigator awareness was accomplished through informational outreach sessions at AAIC and will continue at ASHG in 2024

Exhibit Hall Booth

Visit us at booth 1023 at ASHG!

Poster Presentations

ADRC workshop at AAIC in partnership with NACC, Sage, and NCRAD

ASHG 2024 Activities

ASHG Exhibit Hall Booth Visit us at booth **1023D** at ASHG

See you this November in Denver!

ABOUT

Advanced Search

🖂 Email

A Share

Citation Tools

🔡 Get QR code

Q

Next 🕤

The National Institute on Aging **Genetics of Alzheimer's Disease Data Storage Site**

The NIAGADS is a collaborative agreement between the National Institute on Aging and the University of Pennsylvania that stores and distributes genetics and genomics data from studies on Alzheimer's disease, related dementias, and aging to gualified researchers globally.

Qualified Access

Learn More

The NIAGADS Data Sharing Service (DSS) is home to genetics and genomics data from the Alzheimer's Disease Sequencing project and many other datasets that require qualified access for distribution.

Open Access In addition to qualified access data housed in the DSS, NIAGADS freely offers any ADRD data we can through our publicly available files portal and annotation resources.

medR_χiv CSH Spring BMJ Yale HOME | SUBMIT | FAQ | BLOG | ALERTS / RSS | RESOURCES THE PREPRINT SERVER FOR HEALTH SCIENCES Search

A Follow this preprint

G Previous

Posted October 09, 2024.

Download PDF

Author Declarations

Print/Save

Options

Supplementary

Revision Summary

📫 Like 0

Material

Data/Code

Роst

NIAGADS: A Comprehensive National Data Repository for Alzheimer's Disease and Related Dementia Genetics and **Genomics Research**

Amanda Kuzma, Otto Valladares, Emily Greenfest-Allen, Heather Nicaretta, Maureen Kirsh, Youli Ren, Zivadin Katanic, Heather White, Andrew Wilk, Lauren Bass, lascha Brettschneider, Luke Carter, leffrey Cifello, Wei-Hsuan Chuang, Kaylyn Clark, Prabhakaran Gangadharan, Jacob Haut, Pei-Chuan Ho, Wenhwai Horng, Taha Iqbal, Yumi Jin, Peter Keskinen, Alexis Lerro Rose, Michelle K Moon, Joseph Manuel, Liming Qu, Flawless Robbins, Naveensri Saravanan, Jin Sha, Sam Tate, Yi Zhao, Laura Cantwell, Jake Gardner, Shin-Yi Chou, Jung-Ying Tzeng, William Bush, Adam Naj, Pavel Kuksa, Wan-Ping Lee, Yuk Yee Leung, Gerard Schellenberg, Li-San Wang, Alzheimer's Disease Sequencing Project **doi:** https://doi.org/10.1101/2024.10.07.24315029

DOI: 10.1101/2024.10.07.24315029

We are forming a **Genetics Data Workgroup** within the ADRC Program

- NACC and NIAGADS are organizing the workgroup
- Currently in planning stage
- Primary goal: understand ADRC needs in accessing and using genetic data; inform and advise NIAGADS and NACC

Please contact **Sarah Biber** or **Li-San Wang** if you are interested in participating!!