

Midlife and Later-life Social Risk Scores (SRSs) Modify the Effects of *APOE* ε4 on Alzheimer's Disease

Xian Wu, PhD Postdoc Scholar University of Kentucky ADRC

Acknowledgment

NACC

THE NIA ALZHEIMER'S DISEASE RESEARCH CENTERS PROGRAM National Alzheimer's Coordinating Center

2024-2026 New Investigator Awards

Comprehensive Gene-Environment Interactions in Alzheimer's Disease

Motivation of this project

Late-onset Alzheimer's disease (LOAD): people aged 65 years or older 60-80% of LOAD risk heritable
Multiple genes play a role

Itziar de Rojas et al. (2021) Nature communication

Motivation of this project

1/3 LOAD are modifiable by environmental factors
 Many environmental factors potentially affect LOAD
 Environmental effects on LOAD vary in midlife and later-life

- 1. Air pollution
- 8. Hypertension

10. Obesity

- 2. Depression 9. Lower education level
- Diabetes
- 4. Excessive alcohol use 11. Physical inactivity
- 5. Head injury
- 6. Hearing loss
- 7. High cholesterol
- 13. Social isolation
- 14. Vision loss

12. Smoking

How to comprehensively examine geneenvironment interactions in LOAD from a life-course perspective?

Motivation of this project

One possible solution: G × E interactions in LOAD
 ➢ Construct a comprehensive score for genetic risks (G)
 ➢ Construct a comprehensive score for environmental risks (E)

Math ability = not directly observed

Item Response Theory (IRT)

Test score = directly observed

	Droblom	Correct = 1 incorrect = 0			
	Problem	Student 1	Student 2		
Difficulty	ltem 1	1	1		
	ltem 2	0	0		
	ltem 3	1	0		
	ltem 4	1	1		
. ↓	ltem 5	0	1		
	Total	3	3		

Environmental risk = not directly observed

Item Response Theory (IRT)

Environmental variables = directly observed

	Environmental	Yes = 1 No = 0		
	Variable	Participant 1	Participant 2	
Less common	Alcohol Use	1	1	
	Smoking	0	0	
	HNT	1	0	
	Diabetes	1	1	
	Hearing Loss	0	1	
·	Total	3	3	

Model can be extended	Merits of IRT-based models		
Binary 0, 1 📫 Ordered 0, 1, 2, 3,	Allow different response patterns		
Unidimensional 📫 Multidimensional	Fit environment risk structure		
One parameter \implies Two or more parameters	Provide information of variables		

Multidimensional Generalized Partial Credit Model (GPCM) implemented by the "mirt" R package

https://cran.r-project.org/web/packages/mirt/mirt.pdf

Aims of this project

Polygenic risk score (PRS)

An estimate of an individual's genetic liability to LOAD by aggregating the genetic effects of single-nucleotide variants (SNVs)

Environmental risk score (ERS)

PRS × ERS interactions

Preliminary analyses: social variables in NACC UDS v3

Recoded social variables for GPCM

Social factors	NACC variable	0	1	2	3
Primary language	PRIMLANG	English	Non-English		
Education	EDUC	12 years +	9-12 years	6-8 years	0-5 years
Marital status	MARISTAT	Non-married	Married		
Living situation	NACCLIVS	Alone	With spouse	With group	
Level of independence	INDEPEND	Independent	Some assistance	Dependent	
Type of residence	RESIDENC	Private residence	Assisted living home	Hospital	

Social Variables by Race and Lifetime

Contributions to SRS for each variable from GPCM

Contributions to SRS for each variable from GPCM

MoCA Scores by APOE4 and Midlife SRS in NHW

In NHW, APOE ε_4 carriers had lower MoCA scores on average

In Low SRS group, APOE ε_4 carriers had a lower mean MoCA score, compared to APOE ε_4 non-carriers

MoCA Scores by APOE4 and Later-life SRS in AA

had lower MoCA scores on average MoCA Scores by APOE4 in AA 50 Mean MoCA = 22.2 Mean MoCA = 20.5 40 n = 2086 ******** n = 1694 MoCA 20-10 0. Carrier Non-carrier

APOE4

**** *p* < .0001

In AA, APOE ε_4 carriers

APOE ε_4 carriers who had a higher laterlife SRS had the lowest mean MoCA score

Modeling

 \circ APOE ε4 genotype: 0 = -/-, 1 = ε4/-, 2 = ε4/ε4.

- Phenotypes: Neurocognition & Neuropathology
 - MMSE (Mini-Mental State Examination)
 - MoCA (Montreal Cognitive Assessment)
 - A β (Thal phase ratings for A β distribution, A score)
 - Tau (Braak NFT stage categories for tau neurofibrillary degeneration, B score)
- Adjustment: age & sex
- \circ Two racial groups:
 - Non-Hispanic White (NHW) (sample size n = 37,142)
 - African American (AA)
 - (sample size n = 7,422)

NACC UDS data				
armoni D	zed ata	Phe (UDS	enot <u>y</u> S)	ypic
	Initial Vielt (NP)	Falon ap Visk (TVP)	Tel. Initial Visit (TIP)	Tel. Fallow-sp (TFP)
bject Demographics		F	r.	
	A	A	K	L.
Co-participant Demographics	-			
Co-participant Demographics Subject Family History	4	A	A	2

Regression Results

Midlife (aged 40 and 65 years)

	MMSE	MoCA	Αβ	Tau		
NHW	\hat{eta} (SE)	\hat{eta} (SE)	\hat{eta} (SE)	\hat{eta} (SE)		
APOE	-0.5 (0.2)	-1.0 (0.3)	1.0 (0.1)	0.8 (0.1)		
SRS	-0.7 (0.1)	-0.8 (0.2)	0.2 (0.1)	0.2 (0.1)		
APOE×SRS	0.1 (0.2)	0.2 (0.3)	-0.2 (0.1)	-0.1 (0.1)		
AA						
APOE	-1.9 (0.3)	-0.7 (0.4)	2.0 (1.4)	1.3 (0.6)		
SRS	0.0 (0.3)	-0.1 (0.4)	-0.0 (0.6)	0.8 (0.6)		
APOE×SRS	0.6 (0.3)	-0.1 (0.5)	1.7 (1.5)	-0.3 (0.8)		
Significant results in hold $(n < 0.5)$ NHW – non-Hispanic White $\Delta \Delta$ – African						

Significant results in bold (p < .05). NHW = non-Hispanic White, AA = African American, MMSE = Mini-mental state examination, MoCA = Montreal cognitive assessment, SRS = social risk score, SE = standard error

Later life (aged 65 years or older)						
	MMSE	MoCA	Αβ	Tau		
NHW	\hat{eta} (SE)	\hat{eta} (SE)	\hat{eta} (SE)	\hat{eta} (SE)		
APOE	-1.9 (0.1)	-2.1 (0.1)	1.4 (0.1)	1.1 (0.1)		
SRS	-0.6 (0.1)	-0.5 (0.1)	0.1 (0.1)	0.1 (0.0)		
APOE×SRS	0.0 (0.1)	-0.1 (0.1)	0.0 (0.1)	-0.0 (0.0)		
AA						
APOE	-2.0 (0.2)	-1.8 (0.3)	1.6 (0.3)	1.1 (0.2)		
SRS	-0.6 (0.1)	-0.1 (0.2)	0.1 (0.3)	0.2 (0.2)		
APOE×SRS	-0.4 (0.2)	-0.7 (0.3)	0.0 (0.3)	0.2 (0.2)		

Significant results in bold (p < .05). NHW = non-Hispanic White, AA = African American, MMSE = Mini-mental state examination, MoCA = Montreal cognitive assessment, SRS = social risk score, SE = standard error

Summary

- We constructed midlife and later-life SRSs based on six variables primary language, education, marital status, living situation, level of independence, type of residence
- Marital status, living situation, type of residence mainly contributed to midlife and later-life SRSs across NHW and AA, which might indicate "<u>living conditions</u>"
- Midlife and later-life SRSs modified the effects of APOE ε4 on neurocognition scores (MMSE and MoCA) in AA

Next steps: we will include more environment variables

Physical variables Body mass index (BMI) Hypertension Diabetes **Hypercholesterolemia** Arthritis **Traumatic brain injury (TBI)** Hyposomnia/insomnia **Bowel Incontinence Urinary Incontinence** Sleep apnea Wear corrective lenses Wear a hearing aid(s) Depression

Lifestyle variables Average number of packs smoked per day At least one drink of any alcoholic beverage Vitamin B12 deficiency

Behavioral variables Writing checks Assembling tax records **Shopping alone** Playing a game of skill **Heating water** Preparing a balanced meal **Keeping track of current events** Paying attention to a TV program **Remembering appointments** Traveling

Next steps: Look forward to UDS v4 data available We could include more variables, SDoH

NACC THE NIA ALZHEIMER'S DISEASE RESEARCH CENTERS PROGRAM National Alzheimer's Coordinating Center

2024-2026 New Investigator Awards

Comprehensive Gene-Environment Interactions in Alzheimer's Disease

Mentors

Dr. Yuriko Katsumata Dr. Dave Fardo Dr. Pete Nelson Dr. Erin Abner Dr. Bryan James Dr. Linda Van Eldik

UK-ADRC Director

Acknowledgment

My Lab (Statistical 'Omics Research Center, S'ORCe)

Funding sources for my research

P01AG078116

University of Kentucky CCTS DREAM Scholar Program

References

- 1. Gatz M, Reynolds CA, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168-174.
- 2. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. Lancet Neurol. 2011 Sep;10(9):819-28. doi: 10.1016/S1474-4422(11)70072-2
- 3. Livingston G, Huntley J, Sommerlad A, et al. **Dementia prevention, intervention, and care: 2020 report of the Lancet Commission**. *Lancet*. 2020 Aug 8;396(10248):413-446. doi: 10.1016/S0140-6736(20)30367-6
- 4. Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. *Pharmacol Ther.* 2019 Jul;199:173-187. doi: 10.1016/j.pharmthera.2019.03.005
- 5. Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. *Nat Rev Neurol.* 2022 Nov;18(11):643-660. doi: 10.1038/s41582-022-00714-w
- 6. José M Aravena, Jakyung Lee, Anna E Schwartz, Kate Nyhan, Shi-Yi Wang, Becca R Levy. **Beneficial effect of societal factors on** *APOE***-ε2 and ε4 carriers' brain health: A systematic review**, *The Journals of Gerontology: Series A*, 2023; glad237. doi: https://doi.org/10.1093/gerona/glad237
- 7. Dunn AR, O'Connell KMS, Kaczorowski CC. Gene-by-environment interactions in Alzheimer's disease and Parkinson's disease. *Neurosci Biobehav Rev.* 2019 Aug;103:73-80. doi: 10.1016/j.neubiorev.2019.06.018
- 8. European Alzheimer's & Dementia Biobank Mendelian Randomization (EADB-MR) Collaboration; Luo J, Thomassen JQ, et. al. Genetic associations between modifiable risk factors and Alzheimer disease. *JAMA Netw Open*. 2023 May 1;6(5):e2313734. doi: 10.1001/jamanetworkopen.2023.13734
- 9. Visscher PM, Hill WG, Wray NR. Heritability in the genomics era-concepts and misconceptions. *Nature Reviews Genetics*. 2008;9(4):255-66.
- 10. Muraki E. A generalized partial credit model: Application of an EM algorithm. Appl Psychol Meas. 1992; 16:159-76.
- 11. Stemler, SE & Naples, A. Rasch measurement v. item response theory: Knowing when to cross the line, *Practical Assessment, Research, and Evaluation.* 2021; 26(1): 11. doi: https://doi.org/10.7275/v2gd-4441
- 12. Chalmers RP. *mirt: A Multidimensional Item Response Theory Package for the R Environment*. Journal of Statistical Software. 2012;48:1 29.

Both items and persons are located on the same latent variable continuum.

What does $f(\theta_i - \beta_j)$ look like?

Logistic function $P(y_{ij} = 1 | \theta_i, \beta_j) = \frac{1}{1 + e^{-(\theta_i - \beta_j)}}$ Rasch model

In general, the Rasch model can be written as

$$L(\theta, \beta | y) = \prod_{i=1}^{N} \prod_{j=1}^{J} \frac{e^{y_{ij}(\theta_i - \beta_j)}}{1 + e^{(\theta_i - \beta_j)}} = \frac{\exp\{\sum_{i=1}^{N} \sum_{j=1}^{J} y_{ij}(\theta_i - \beta_j)\}}{\prod_{i=1}^{N} \prod_{j=1}^{J} \{1 + e^{(\theta_i - \beta_j)}\}}$$

Model can be extended

Binary 0, 1 \longrightarrow Ordered 0, 1, 2, 3,.... $y_{ijk} = \begin{cases} 1 \text{ if } u_{ij} = k \\ 0 \text{ otherwise} \end{cases}$ Unidimensional \longrightarrow MultidimensionalOne parameter \longrightarrow Two or more
parameters $\frac{\gamma_j}{1 + e^{-\alpha_j(\theta_i - \beta_j)}}$

Multidimensional Partial Credit Model implemented by the "mirt" R package

https://cran.r-project.org/web/packages/mirt/mirt.pdf

Items

Items