

New Investigator Award Program Past Awardees

Yuriko Katsumata, PhD & Corey McMillan, PhD

2022 New Investigator Award Winner

Yuriko Katsumata, PhD
Assistant Professor, University of
Kentucky
University of Kentucky ADRC

Application Strategies for NIAP

Presented by: Yuriko Katsumata (University of Kentucky)

Personal Introduction

2013

2018

2022

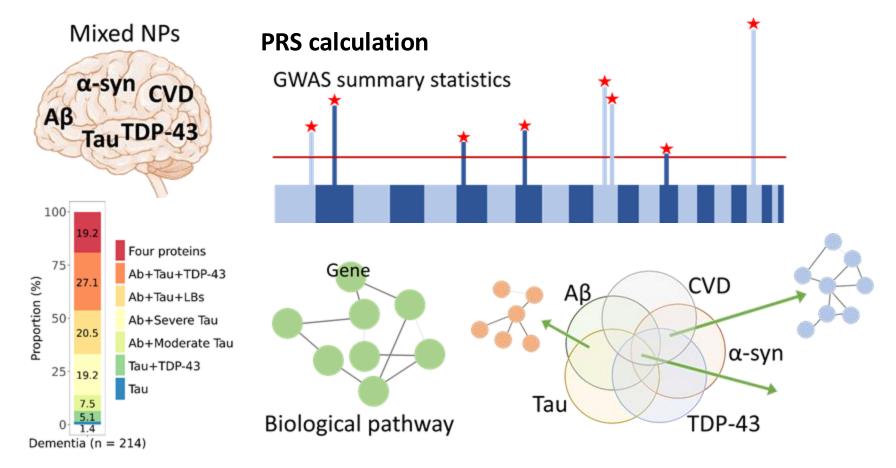
PhD program
Epidemiology and Biostatistics
University of Kentucky

Research Assistant Professor Biostatistics University of Kentucky NACC New Investigator Award

Dr. David Fardo Statistical Geneticist

2024

Research Associate Professor Biostatistics University of Kentucky



New Investigator Award Project

2022

NACC New Investigator Award Pathway-specific polygenic risk scores on mixed neuropathologies

New Investigator Award project

Received: 7 July 2023

Revised: 28 November 2023

Accepted: 30 November 2023

DOI: 10.1002/alz.13741

RESEARCH ARTICLE

Genetic associations with dementia-related proteinopathy: Application of item response theory

```
Yuriko Katsumata<sup>1,2</sup> | David W. Fardo<sup>1,2</sup> | Lincoln M. P. Shade<sup>1</sup> | Xian Wu<sup>1,2</sup> | Shama D. Karanth<sup>3,4</sup> | Timothy J. Hohman<sup>5</sup> | Julie A. Schneider<sup>6,7,8</sup> | David A. Bennett<sup>6,7,8</sup> | Jose M. Farfel<sup>7,8</sup> | Kathryn Gauthreaux<sup>9</sup> | Charles Mock<sup>9</sup> | Walter A. Kukull<sup>9</sup> | Erin L. Abner<sup>2,10</sup> | Peter T. Nelson<sup>2,11</sup> | The Alzheimer's Disease Neuroimaging Initiative<sup>12</sup> | The National Alzheimer's Coordinating Center
```


Proteinopathies and Biological Pathway-based Alzheimer's Disease Polygenic Risk Score

Yuriko Katsumata^{1,4}, Xian Wu^{1,4}, Khine Zin Aung^{1,4}, Inori Tsuchiya^{1,4}, Lincoln M. Shade^{1,4}, Shama Karanth^{5,6}, Kathryn Gauthreaux⁷, Charles Mock⁷, Walter A. Kukull⁷, Erin L. Abner^{2,4}, Peter T. Nelson^{3,4}, David W. Fardo^{1,4}

1 Department of Biostatistics, 2 Department of Epidemiology and Environmental Health, 3 Department of Pathology, 4 Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 5 Department of Surgery, 6 UF Health Cancer Center, University of Florida, FL, 7 National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, WA

- Specific Aims
 - What is my interest?
 - What are knowledge gaps?
- Approach
 - To fill the knowledge gaps, what should I do and what can I do?

- Specific Aims
 - What is my interest?
 - Mixed neuropathologies and genetics
 - What are knowledge gaps?
 - O What we know and what we don't know?
 - Pure Alzheimer's disease is not common
 - There is no optimal classification criteria for mixed neuropathologies
 - Genetic risks of mixed neuropathologies are unknown
 - Diverse biological pathways may be differentially responsible for mixed neuropathologies

Keywords

Spec Aim1

Spec Aim2 and 3

- Approach
 - To fill the knowledge gaps, what should I do and what can I do?
 - How to define mixed neuropathologies

- Approach
 - To fill the knowledge gaps, what should I do and what can I do?
 - How to define mixed neuropathologies

Neuropathology	NACC variable	0	1	2	3
A score	NPTHAL	Phase 0	Phase 1/2	Phase 3	Phase 4/5
B score	NAC # of combinations of NPs			S	Stage 5/6
C score	NAC # of Combination				Frequent
TDP-43 in amygdala	NP1	3,072	wavs		
TDP-43 in limbic	NP1	3,012	· VVO.		
TDP-43 in Neocortex	NP1 UPE	INO	Yes		
Lewy bodies	NACCLEWY	No	Others	Neocortex	
HS	NPHIPSCL	No	Yes		

- Approach
 - To fill the knowledge gaps, what should I do and what can I do?
 - How to define mixed neuropathologies

Describe Dimensionality reduction

of dimensions

- Approach
 - To fill the knowledge gaps, what should I do and what can I do?
 - How to define mixed neuropathologies

Describe Dimensionality reduction

of dimensions

We will apply a dimensionality reduction method...

- Approach
 - To fill the knowledge gaps, what should I do and what can I do?
 - How to define mixed neuropathologies

- Describe Dimensionality reduction

 # of dimensions

 - We will apply a dimensionality reduction method...
 - We will apply the item response theory which is a dimensionality reduction method...

- Approach
 - To fill the knowledge gaps, what should I do and what can I do?
 - How to define mixed neuropathologies

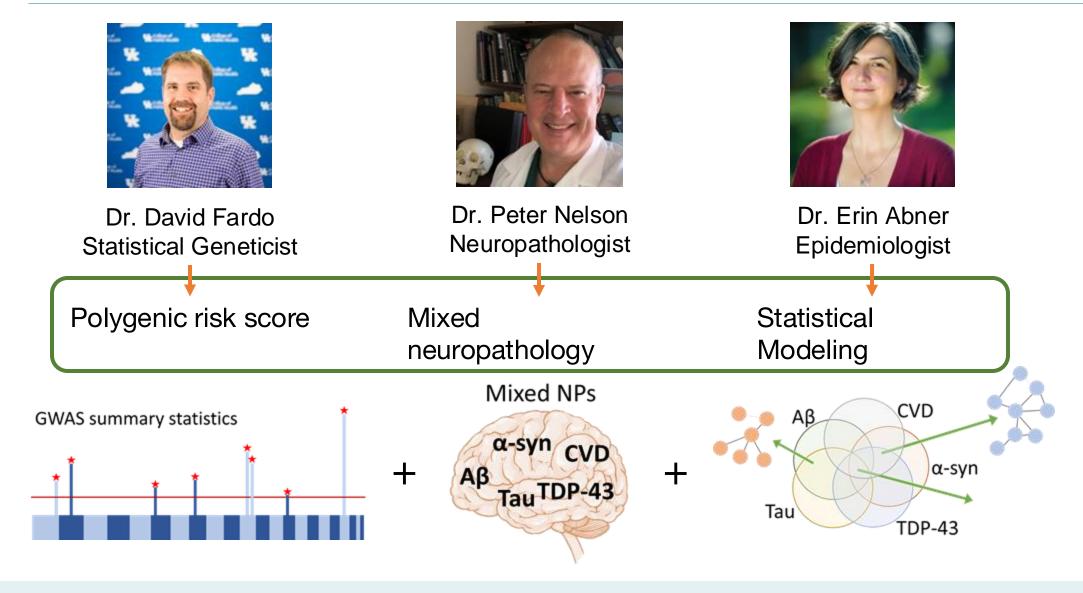
- Describe Dimensionality reduction

 # of dimensions

 - We will apply a dimensionality reduction method...
 - We will apply the item response theory which is a dimensionality reduction method...
 - 3. We will apply a generalized partial credit model (GPCM) within the item response theory framework which is a dimensionality reduction method...

- Approach
 - To fill the knowledge gaps, what should I do and what can I do?
 - How to define mixed neuropathologies

- Describe Dimensionality reduction


 # of dimensions

 - 1. We will apply a dimensionality reduction method...
 - We will apply the item response theory which is a dimensionality reduction method...
 - We will apply a generalized partial credit model (GPCM) within the item response theory framework which is a dimensionality reduction method...
 - 4. We will apply a generalized partial credit model (GPCM) within the item response theory framework which is a dimensionality reduction method... The GPCM will be run with the "mirt" R package...

Mentorship and Support

Career Impact

2024

Research Associate Professor Biostatistics University of Kentucky

Mentee

Mentor

Xian Wu, PhD #
University of Kentucky ADRC

Rather than looking at how just one factor influences Alzheimer's disease onset, Wu wants to look at how both genetic and environmental factors, like a particular mutation in a gene or exposure to smoking, interact in the context of Alzheimer's. In particular, she will look at this genetic-environmental overlap in late-onset Alzheimer's disease, during midlife and later life, and across ethnoracial groups.

https://naccdata.org/nacc-productivity/2024-new-investigator-award-winners

Advice for Prospective Applicants

- Have multiple mentors with different expertise
 - Sign up for the NIAP Mentorship Program
 - Reach out to other mentors
- Generate an attractive specific aim page
- Write detailed approach
- Do not procrastinate
 - Polish your proposal again and again
 - Get suggestions and comments from as many people as possible

Acknowledgment

THE NIA ALZHEIMER'S DISEASE RESEARCH CENTERS PROGRAM

National Alzheimer's Coordinating Center

Sanders-Brown Center on Aging

PI & Director

Dr. Linda Van Eldik

Mentors

Dr. David Fardo

Dr. Peter Nelson

Dr. Erin Abner

Thank you!

Connect with me!

Yuriko Katsumata, PhD

katsumata.yuriko@uky.edu